Clinical Use of Drug Resistance Testing in HIV-1 Infection

Daniel R. Kuritzkes, MD

Associate Professor of Medicine &
Microbiology

University of Colorado Health Sciences Center

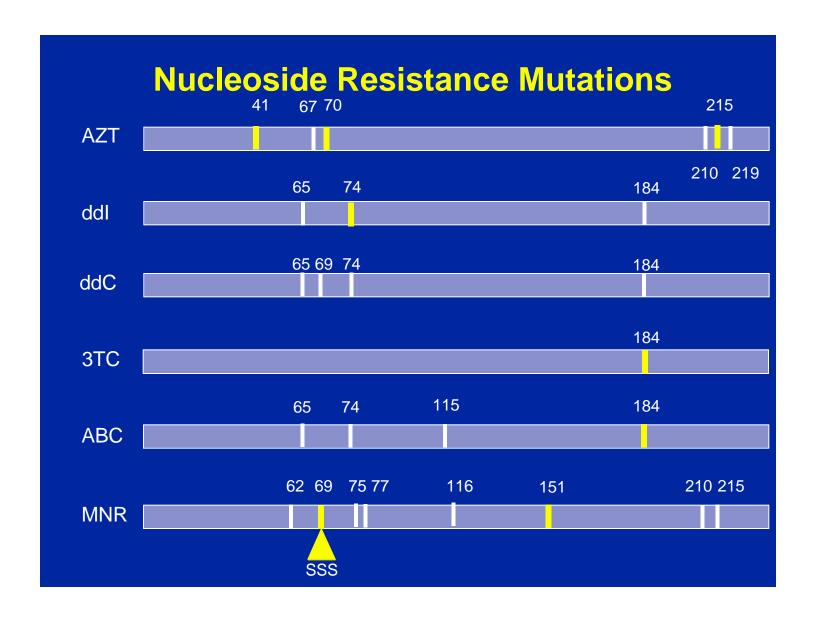
HIV-1 drug resistance

- Emergence of drug-resistant virus is an inevitable consequence of the failure to fully supress HIV-1 replication.
- Drug resistance is a major factor contributing to the failure of antiretroviral therapy.

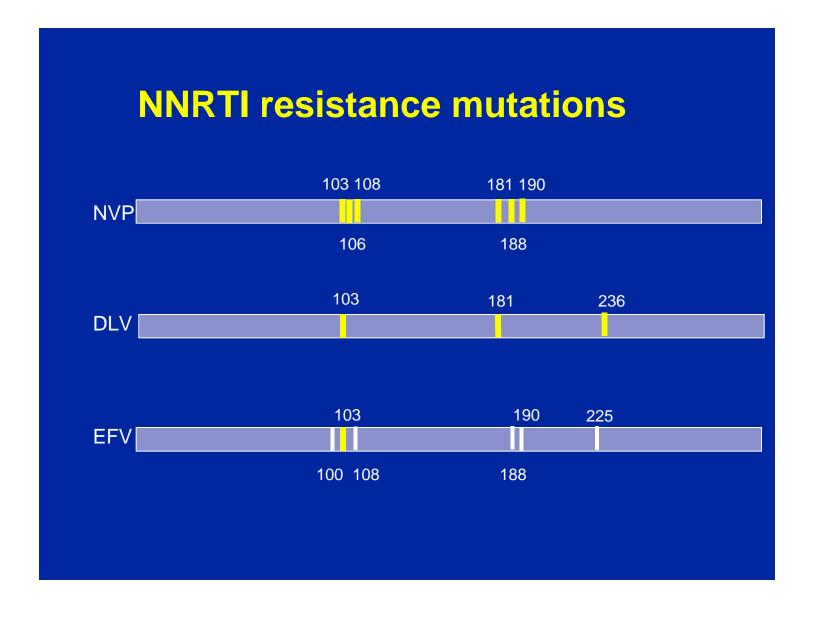
Possible Causes of Treatment Failure

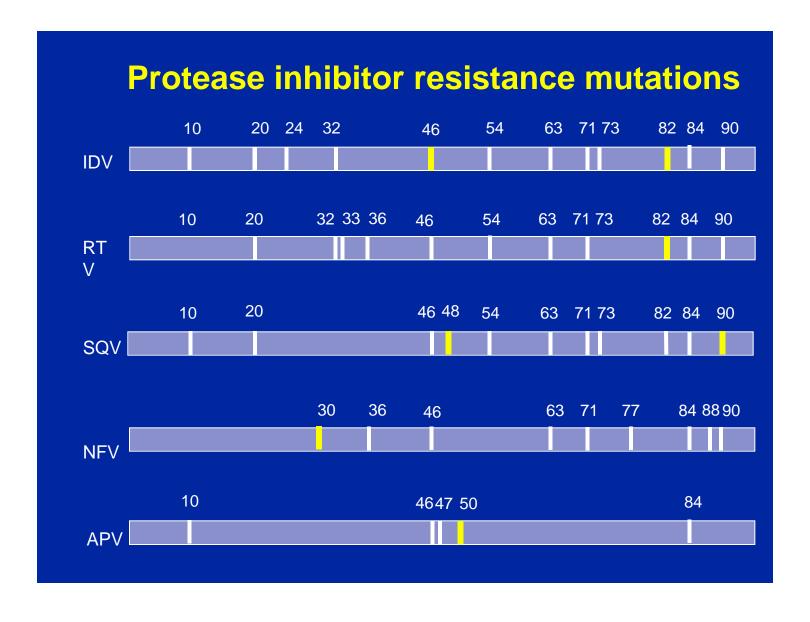
- Poor adherence
- Pharmacologic factors
- Limited drug/regimen potency
- Host factors
- Drug resistance

Viral Population in an RNA Virus Infected Person

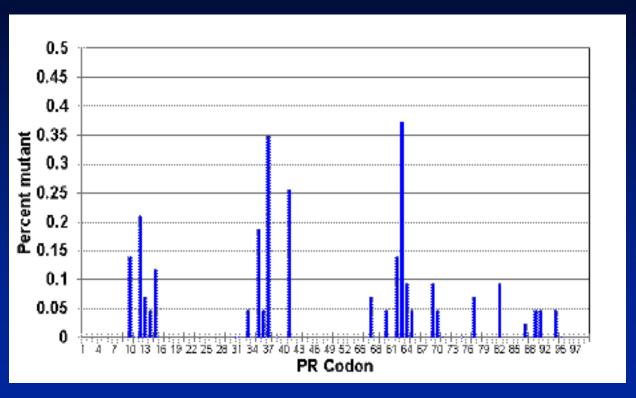

- A quasispecies
- Genetically distinct viral variants evolve from initial virus inoculum
- Variants are generated due to error-prone nature of RT

Resistance-associated mutations


- For some drugs (eg, 3TC, NNRTI's), single mutations can confer high-level resistance.
- For other drugs, high-level resistance requires 3 or more mutations within a single genome (eg, ZDV, Pl's).
- Accumulation of additional resistance mutations after initial treatment failure suggests continued HIV-1 adaptation to growth in presence of drugs.


Rapid turnover of viral quasispecies

- Approximately half of the virus population in plasma is cleared and replaced each day.
- Rapid turnover allows rapid emergence of drugresistant variants under selective pressure.
- Resistant variants may be replaced by residual wild-type virus if selective pressure is removed.
- Resting latently infected cells may continue to harbor drug-resistant provirus.



Mutational interactions in HIV-1 RT M184V **M41L** Y181C **L74V T215Y**

PR mutations in PI-naïve patients

n=45

Primary drug resistance in HIV-1

Wegner et al

- Recent (3 yr) seroconverters in the military (N=114)
- NRTI 1%; NNRTI 5-7.7%; PI 1% (Virco)
- up to 20% if you include "intermediate" category

Little et al

- New seroconverters or patients with primary infection (N=133)
- NRTI 2%; NNRTI 1%; PI 2% (ViroLogic)

Boden et al

- Newly infected gay men in NYC, LA (N=80)
- AZT or 3TC, 5-7.5%; NNRTI 7.5%; PI 2.5% (Virco)

Verbiest et al

- Survey of 133 treatment-naïve subjects in 5 cities
- NRTI 1%; NNRTI 2%; PI 2% (ViroLogic)

Not all PI failure is due to resistance

- Resistance to Pl's develops more slowly than resistance to other components of a regimen.
 - 3TC, EFV
- Initial failure of triple-therapy regimens associated with emergence of M184V mutation, not PI resistance mutations.
 - ACTG 343, ACTG 347, Trilège
- A regimen may fail without resistance to all components of that regimen.

Detecting drug resistance

- Genotypic assays
- Phenotypic assays

Genotypic assays for drug resistance

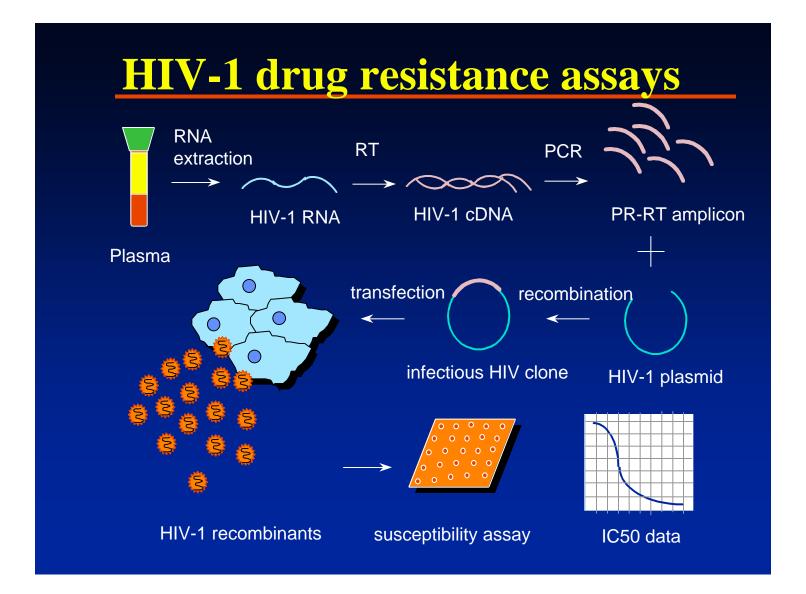
- Determine presence or absence of specific changes in HIV-1 genes (PR, RT).
- Pre-suppose knowledge of critical mutations.
 - Drug resistance is *inferred* by presence of known mutations.
- Various methods and platforms
 - automated dideoxynucleotide sequencing
 - ABI, Alf, VGI, "home brew"
 - hybridization-based sequencing
 - GeneChip, LiPA

QC of HIV-1 genotyping (ENVA 2)

- Coded panel of plasma specimens with wt or mutant HIV-1 strains in different proportions
 - Five mutations in PR and RT, respectively
- WT specimens correctly identified in most labs
 - RT 100%
 - PR 94%
- Mutant sequences identified less often
 - RT 66%
 - PR 71%
- In samples that contained 50:50 mix of WT:MUT
 - 37% detected all five mutations in RT
 - 49% detected all five mutations in PR

Schuurman et al. Rancho Bernardo, 1999 [Abstract 58].

Novel genotypes


- Survey of >9000 samples by Antivirogram and VircoGen sequencing.
- New mutations associated with resistance identified for each class of drugs.
 - require confirmation by site-directed mutagenesis
- Continued discovery of new resistance mutations complicates interpretation of genotypic assays.

Hertogs et al, Rancho Bernardo, 1999.

Phenotypic assays of drug resistance

- Measure the IC₅₀ or IC₉₀ for a drug by recombinant virus assay.
 - Antivirogram (Virco)
 - PhenoSense (ViroLogic)
- Changes >2.5- to 4-fold reliably detected.
- Clinically relevant "break points" have not been determined for most drugs.
 - Assays measure drug susceptibility
 - Definition of "resistance" requires clinical correlation

Problems in defining drug resistance

Technical limitations of resistance assays

- Generally, plasma samples with >500-1000 copies/mL of HIV-1 RNA are needed to generate results.
- Species constituting 20% of amplified product can usually be detected.
- False positive and negative results possible from carryover from other HIV-1 samples or from random polymerase errors during PCR.

Relative Advantages of Assays

Genotypic Assays

- Availability
- Shorter time to results (days)
- Less technically demanding
- Mutations may precede phenotypic resistance

Phenotypic Assays

- Direct measure of susceptibility
- More familiar results (eg, IC₅₀ or IC₉₀)

Limitations of genotypic assays

- Indirect measure of susceptibility
- May not correlate with phenotype
- Expert interpretation may be required
- Insensitive for detecting minor species

Limitations of Phenotypic Assays

- Restricted availability
- Longer time to results (weeks)
- Clinically significant cut-offs not defined
- Insensitive for detecting minor species

Evidence supporting clinical benefits of resistance testing

- Retrospective studies
 - Genotype
 - Phenotype
- Prospective randomized trials
 - Viradapt
 - GART

Retrospective drug resistance studies

Deeks et al

Phenotype predicts response to RTV/SQV salvage therapy.

Lanier et al

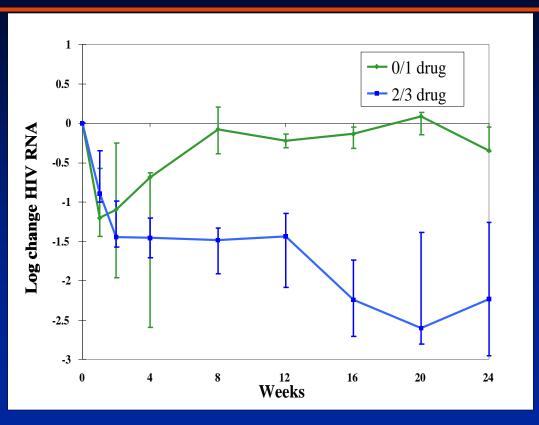
Phenotype and genotype predict response to abacavir

Harrigan et al

 Baseline genotype and phenotype are significant predictors of response to RTV/SQV after PI failure

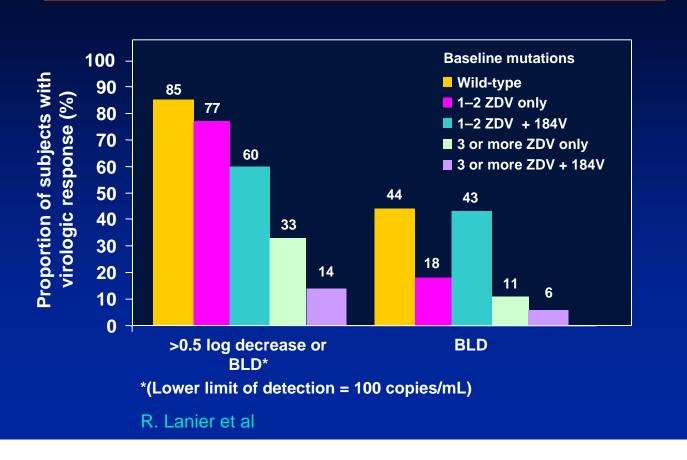
Zolopa et al

 Genotype is a significant *independent* predictor of response to salvage therapy after controlling for treatment history


Katzenstein et al

Number of RT resistance mutations associated with failure

Lorenzi et al


Number of PR and RT mutations independent predictor

HIV RNA Response: Number of Active Drugs

Deeks et al 1999

Effect of zidovudine and lamivudine mutations on HIV-1 RNA response to abacavir by week 16

VIRADAPT

- Randomized trial of genotyping for management of patients failing antiretroviral therapy
- 108 patients (mean plasma HIV-1 RNA = 4.8 log)

	genotyping	control	р
∆ plasma HIV-1 RNA			
3 mos	-1.3	-0.6	0.021
6 mos	-1.3	-0.5	0.038
% <200 copies/mL			
3 mos	33%	16.7%	0.039
6 mos	39.1%	9.5%	0.047

Durant et al Lancet 1999.

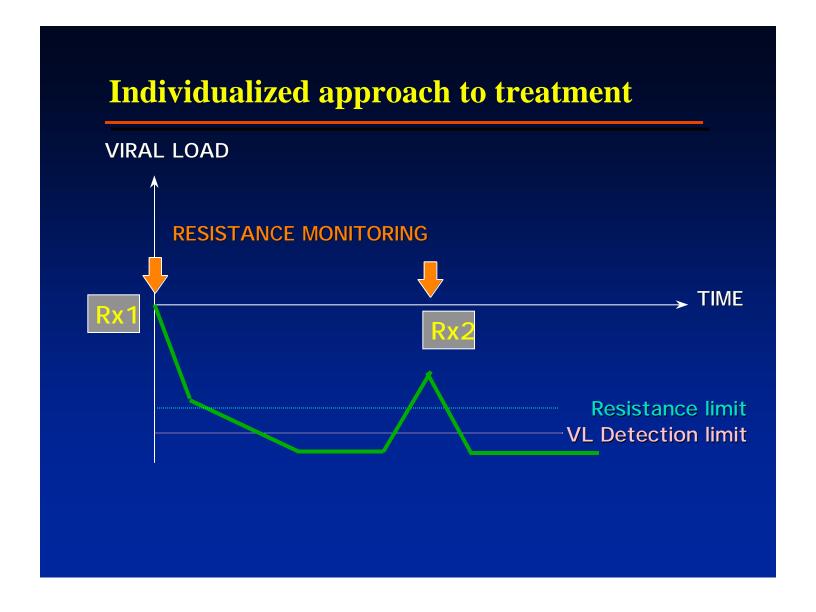
GART (CPCRA 046)

- Randomized trial of genotyping vs clinical management.
- Expert advice regarding choice of regimen provided to patients in genotyping arm, but not to controls.
- Virologic failure defined as 3-fold increase in plasma HIV-1 RNA from baseline after 16 wk treatment with 2 NRTI + PI.
- N = 153 patients
- Follow-up limited to 12 weeks.

Baxter et al. 6th CROI LB 8, Chicago, 1999.

GART (CPCRA 046) Results

- 73% of patients had major RT and PI resistance mutations
 - 20% had RT mutation w/o PI mutation
 - 4.6% had no resistance mutations


	GART	Std of	Care	р
∆RNA	-1.17 log	-0.62 l	og	0.0001
% <500	29%	17%		0.15
# sens dru	gs	1 2	3	4
∆RNA per o (log/mL)	drug -	0.1 -0.58	-1.02	-1.25

Baxter et al. 6th CROI LB 8, Chicago, 1999.

GART (CPCRA 046) comments

- Each additional new drug to which virus was "sensitive" added 0.26 log decrease in HIV-1 RNA.
- 86% in GART arm received 3 active drugs vs 30% in control arm.
- GART resulted in a recommended change in regimen in 85% of patients, but only 54% followed through on this advice.

Baxter et al. 6th CROI LB 8, Chicago, 1999.

Possible uses for drug resistance testing

- Primary HIV Infection
- Before starting therapy
- Changing therapy
 - Early failure
 - Late failure
- Pregnancy
- Post-exposure prophylaxis

Use of Drug Resistance Testing When Changing Therapy

- Confirmed increase in plasma HIV-1 RNA level should be the main trigger for considering change in therapy.
- No substitute for thorough treatment history in choosing new regimens.
- If resistance to a drug is detected, use of that drug in a regimen should be avoided (if possible).

Drug Resistance Testing: Caveats

- Resistance tests are most accurate in assessing resistance to the *current* regimen.
- Absence of resistance to a previously used drug does not rule out reservoirs of resistant virus that may emerge after re-initiation of that drug.
- If resistance to a given drug has ever been detected, that drug should probably not be used again, even if current test results suggest viral susceptibility.