SUPPLEMENTARY DATA

Grazoprevir and Elbasvir plus Ribavirin
For Chronic HCV Genotype-1 Infection
After Failure of Combination Therapy Containing a Direct-Acting Antiviral Agent

Xavier Forns, Stuart C. Gordon, Eli Zuckerman, Eric Lawitz, Jose L Calleja,
Harald Hofer, Christopher Gilbert, John Palcza, Anita YM Howe, Mark J DiNubile,
Michael N Robertson, Janice Wahl, Eliav Barr,
and Maria Buti

TABLE OF CONTENTS

EXPANDED ABSTRACT..2
Reasons for Exclusion from the Per-Protocol Population ...3
Table S1. Signature NS3 RAVs associated with early generation protease inhibitor detected by populations sequencing at baseline...4
Table S2a. Impact of signature NS3 RAVs associated with early generation protease inhibitors at baseline on SVR12 rates..6
Table S2b. Impact of specific protease inhibitors and signature RAVs at baseline on SVR12 rates..7
Table S3. Subjects with Adverse Events (Incidence >0%) During the Treatment Phase and Through the First 14 Follow-Up Days Regardless of Causality...8
Table S4. Subjects with Laboratory Findings That Met Predetermined Criteria During the Treatment Phase and Through the First 14 Follow-Up Days...11
GRAPHICAL ABSTRACT...14
Figure S1. Forest plot displaying SVR12 by subgroup..15
EXPANDED ABSTRACT

Background: Further treatment options are needed for patients not achieving a sustained virologic response (SVR) on regimens containing directly-acting antiviral agents (DAA). The Phase-2 C-SALVAGE study evaluated an investigational interferon-free combination of grazoprevir (a NS3/4A protease inhibitor) and elbasvir (a NS5A inhibitor) with ribavirin for patients with chronic HCV genotype-1 infection who had failed licensed DAA-containing therapy.

Methods: C-SALVAGE was an open-label study of grazoprevir 100 mg and elbasvir 50 mg QD with weight-based ribavirin BID for 12 weeks in cirrhotic and non-cirrhotic patients with chronic HCV genotype-1 infection who had not attained SVR after ≥4 weeks of peginterferon and ribavirin plus either boceprevir, telaprevir, or simeprevir. Exclusion criteria included decompensated liver disease, hepatocellular carcinoma, HIV or HBV co-infection, thrombocytopenia <50 x 10^3/μL, or hypoalbuminemia <3.0 g/dL. Resistance-associated variants (RAVs) were identified at baseline by population sequencing. The primary efficacy outcome was a HCV RNA level below the assay limit of quantification (15 IU/mL) 12 weeks after the end of treatment (SVR12).

Results: Of the 79 patients treated with ≥1 dose of study drug, 34 (43.0%) had cirrhosis and 30 (38.0%) had genotype-1a infection. 66 (84%) patients had a history of virologic failure on a regimen containing a NS3/4A protease inhibitor; 12 of the other 13 patients discontinued prior treatment because of side-effects. At entry, 34 (43.6%) of 78 evaluable patients harbored NS3 RAVs. At the end of therapy, RNA levels were <15 IU/mL in all 79 (100%) patients. SVR12 rates were 76/79 (96.2%) overall, 28/30 (93.3%) patients with genotype 1a infection, 63/66 (95.5%) in patients with prior virologic failure, 33/36 (91.7%) in patients with identified NS3 RAVs, and 32/34 (94.1%) in cirrhotic patients. None of the 5 serious adverse events were considered drug-related.

Conclusions: In the C-SALVAGE trial, 79 patients with genotype-1 infection who had failed protease inhibitor-based regimens were treated with grazoprevir and elbasvir plus ribavirin, including 43% with compensated cirrhosis and 84% with prior virologic failure. Despite a high prevalence of RAVs at baseline, the only failures were 3 (3.8%) relapses. Grazoprevir and elbasvir plus ribavirin for 12 weeks provide a promising new and well-tolerated treatment option for patients after failure of triple therapy containing an earlier-generation protease inhibitor.

Reasons for Exclusion from the Per-Protocol Population

A total of 9 study participants were excluded from the per-protocol analysis for the following protocol violations:

- 1 participant had received prior therapy with a DAA not allowed by protocol
 - 1 patient had been previously treated with a course of faldaprevir + PR in addition to telaprevir + PR

- 4 participants had taken an unapproved DAA regimen prior to enrollment
 - 2 patients had received a short-duration regimen of simeprevir + PR in a clinical trial
 - 1 patient had received an additional 8 weeks of boceprevir beyond the 32-week maximum treatment duration as specified in the product label
 - 1 patient had received a 4-week lead-in of PR therapy alone before initiation of telaprevir

- 2 participants had taken an incorrect dose of study medication
 - both patients received 10 mg (instead of 50 mg) of elbasvir/day for the first 8 weeks of study treatment

- 1 participant was being evaluated for active malignancy at the time of entry
 - 1 patient was undergoing evaluation for an laryngeal neoplasm (but did not inform the site personnel until after randomization)

- 1 participant was not reasonably compliant with study medications
 - 1 patient with poor drug adherence throughout the treatment course

SVR_{12} was achieved in 68 (97.1%) of the 70 patients in the per-protocol population and in 8 (88.9%) of the 9 excluded patients. The sole excluded patient who did not attain SVR_{12} had previously received faldaprevir.
Table S1. Signature NS3 RAVs associated with early generation protease inhibitors detected by populations sequencing at baseline.

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of patients</th>
<th>Number of patients with sequenced virus</th>
<th>Number of patients</th>
<th>Baseline NS3 RAVs (number of patients harboring the specified substitution)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without detectable NS3 RAVs</td>
<td>With NS3 RAVs with ≤5X decreased GZP susceptibility*</td>
<td>With NS3 RAVs with >5X decreased GZP susceptibility*</td>
</tr>
<tr>
<td>All</td>
<td>79</td>
<td>78</td>
<td>44 (56.4%)</td>
<td>30 (38.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With NS3 RAVs with ≤5X decreased GZP susceptibility*</td>
<td></td>
<td>With NS3 RAVs with >5X decreased GZP susceptibility*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With NS3 RAVs with >5X decreased GZP susceptibility*</td>
<td></td>
<td>With NS3 RAVs with >5X decreased GZP susceptibility*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V36M/L (8), T54S (4), Q80K (11), V107I (2), S122G (7), R155D/K/T (10), A156T (1), D168E/N (3), M175L (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-genotype</td>
<td></td>
<td>GT1a 30</td>
<td>30</td>
<td>7 (23.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GT1b 49</td>
<td>48</td>
<td>37 (77.1%)</td>
</tr>
<tr>
<td>Cirrhosis Status</td>
<td></td>
<td>No 45</td>
<td>44</td>
<td>25 (56.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes 34</td>
<td>34</td>
<td>19 (55.9%)</td>
</tr>
<tr>
<td>Prior protease-inhibitor treatment</td>
<td></td>
<td>Boceprevir 28</td>
<td>27</td>
<td>17 (63.0%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telaprevir 43</td>
<td>43</td>
<td>24 (55.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simeprevir 8</td>
<td>8</td>
<td>3 (37.5%)</td>
</tr>
</tbody>
</table>

EC₅₀, effective concentration of drug necessary to inhibit replicon growth by 50% compared to the absence of drug; SVR₁₂, sustained virologic response 12 weeks after cessation of study medications.
The following NS3A substitutions were considered as signature NS3 RAVs for the older protease inhibitors: V36A/G/L/M/I, T54A/C/G/S, V55A/I, Y56H, Q80K/R, V107I, 122A/G/R, 1132V, R155X, A156S/T/V/F/G, V158I, D168X, I/V170A/F/T/V, and M175L [2, 12].

*Fold-change in the EC₅₀ of grazoprevir to inhibit the variant replicon relative to a wild-type control referent [18].

*Based on GT1a NS3 RAVs: Y56H, R155G/T/W, A156G/T/V/L, and D168A/G/T/V/L/I/F/Y/E/H/K/. RAVs with >5-fold increased resistance to grazoprevir are in bold print.

*Includes only patients in the numerator with a past history of virologic failure.
Table S2a. Impact of signature NS3 RAVs associated with early generation protease inhibitors at baseline on SVR12 rates.

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Overall SVR12</th>
<th>SVR12 in patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Without detectable NS3 RAVs</td>
</tr>
<tr>
<td></td>
<td>75/78 (96.2%)</td>
<td>44/44 (100%)</td>
</tr>
<tr>
<td>Subtypes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT1a</td>
<td>28/30 (93.3%)</td>
<td>7/7 (100%)</td>
</tr>
<tr>
<td>GT1a with Q80K</td>
<td>10/11 (90.9%)</td>
<td>----</td>
</tr>
<tr>
<td>GT1a without Q80K</td>
<td>18/19 (94.7%)</td>
<td>----</td>
</tr>
<tr>
<td>GT1b</td>
<td>47/48 (97.9%)</td>
<td>37/37 (100%)</td>
</tr>
<tr>
<td>Cirrhosis status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>43/44 (97.7%)</td>
<td>25/25 (100%)</td>
</tr>
<tr>
<td>Yes</td>
<td>32/34 (94.1%)</td>
<td>19/19 (100%)</td>
</tr>
<tr>
<td>Prior protease inhibitor treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boceprevir</td>
<td>26/27 (96.3%)</td>
<td>17/17 (100.0%)</td>
</tr>
<tr>
<td>Telaprevir</td>
<td>41/43 (95.3%)</td>
<td>24/24 (100%)</td>
</tr>
<tr>
<td>Simeprevir</td>
<td>8/8 (100%)</td>
<td>3/3 (100%)</td>
</tr>
</tbody>
</table>

EC₅₀, effective concentration of drug necessary to inhibit replicon growth by 50% compared to the absence of drug; SVR₁₂, sustained virologic response 12 weeks after cessation of study medications.

*The following NS3A substitutions were considered as signature NS3 RAVs for the older protease inhibitors: V36A/G/L/M/I, T54A/C/G/S, V55A/I, Y56H, Q80K/R, V107I, 122A/G/R, I132V, R155X, A156S/T/V/F/G, V158I, D168X, I/V170A/F/T/V, and M175L [2, 12].

**Fold-change in the EC₅₀ of grazoprevir to inhibit the variant replicon relative to a wild-type control referent [18].
Table S2b. Impact of specific protease inhibitors and signature RAVs at baseline on SVR_{12} rates.

<table>
<thead>
<tr>
<th>Prior DAA</th>
<th>Prior all-cause failures (N)</th>
<th>Baseline RAVs§, n/N (%)</th>
<th>SVR_{12} in patients with baseline RAVs, n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NS3</td>
<td>NS5A</td>
</tr>
<tr>
<td>Boceprevir</td>
<td>28</td>
<td>10/27 (37.0%)</td>
<td>3/28 (10.7%)</td>
</tr>
<tr>
<td>Simeprevir</td>
<td>8</td>
<td>5/8 (62.5%)</td>
<td>0/8 (0.0%)</td>
</tr>
<tr>
<td>Telaprevir</td>
<td>43</td>
<td>19/43 (44.2%)</td>
<td>5/43 (10.7%)</td>
</tr>
<tr>
<td>Any</td>
<td>79</td>
<td>34/78 (43.6%)</td>
<td>8/46 (17%)</td>
</tr>
</tbody>
</table>

§Patients may have harbored quasi-species with >1 mutation in the NS3 and/or NS5A genes.
Table S3. Subjects With Adverse Events (Incidence >0%) During the Treatment Phase and First 14 Follow-Up Days Regardless of Causality.

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With one or more adverse events</td>
<td>63</td>
<td>(79.7)</td>
</tr>
<tr>
<td>With no adverse events</td>
<td>16</td>
<td>(20.3)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>6</td>
<td>(7.6)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitations</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear discomfort</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry eye</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>5</td>
<td>(6.3)</td>
</tr>
<tr>
<td>Anal fistula</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Aphthous stomatitis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Change of bowel habit</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Cheilitis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Constipation</td>
<td>5</td>
<td>(6.3)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>6</td>
<td>(7.6)</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Gastritis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>9</td>
<td>(11.4)</td>
</tr>
<tr>
<td>Oesophagitis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Rectal haemorrhage</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4</td>
<td>(5.1)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthenia</td>
<td>12</td>
<td>(15.2)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>22</td>
<td>(27.8)</td>
</tr>
<tr>
<td>Influenza-like illness</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Category</td>
<td>Count</td>
<td>Percentage</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Jaundice</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>12</td>
<td>(15.2)</td>
</tr>
<tr>
<td>Jaundice</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Erysipelas</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Genital herpes</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Hordeolum</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Influenza</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Oral candidiasis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Pharyngitis bacterial</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Accidental overdose</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Investigations</td>
<td>4</td>
<td>(5.1)</td>
</tr>
<tr>
<td>Haemoglobin decreased</td>
<td>4</td>
<td>(5.1)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>4</td>
<td>(5.1)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>9</td>
<td>(11.4)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Back pain</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Laryngeal squamous cell carcinoma</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Seborrhoeic keratosis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>17</td>
<td>(21.5)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Headache</td>
<td>15</td>
<td>(19.0)</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>11</td>
<td>(13.9)</td>
</tr>
<tr>
<td>Apathy</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Depression</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>7</td>
<td>(8.9)</td>
</tr>
<tr>
<td>Irritability</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Medical Condition</td>
<td>Count</td>
<td>Percentage</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Renal colic</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td>7</td>
<td>(8.9)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Cough</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Dry throat</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Oropharyngeal discomfort</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>12</td>
<td>(15.2)</td>
</tr>
<tr>
<td>Alopecia</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>2</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Erythema</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Rash</td>
<td>3</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Rash erythematous</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Rash macular</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Skin maceration</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>4</td>
<td>(5.1)</td>
</tr>
<tr>
<td>Haematoma</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Hot flush</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Pallor</td>
<td>1</td>
<td>(1.3)</td>
</tr>
</tbody>
</table>

Percentages calculated by dividing the n patients with the specified adverse event divided by the 79 total patients. Terms adapted from MedDRA version 17.1. A subject is counted only once in each applicable row but can be included in multiple times under the same organ-system header.
Table S4. Subjects With Laboratory Findings That Met Predetermined Criteria During the Treatment Phase and First 14 Follow-Up Days.

<table>
<thead>
<tr>
<th>Laboratory Test</th>
<th>Grade 1:</th>
<th>Grade 2:</th>
<th>Grade 3:</th>
<th>Grade 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (gm/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 3.0 - <LLN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 2.0 - 2.9</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: <2.0</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: Not Applicable</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.25 - 2.5 x ULN</td>
<td>4/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 2.6 - 5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 5.1 - 10.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >10.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 - 2.5 x Baseline</td>
<td>1/79</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 - 5.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 1.5 x ULN</td>
<td>10/79</td>
<td>(12.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 1.6 - 2.0 x ULN</td>
<td>1/79</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 2.1 - 5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatine Kinase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 3.0 - 5.9 x ULN</td>
<td>1/79</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 6.0 - 9.9 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 10.0 - 19.9 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >=20.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 1.3 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 1.4 - 1.8 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 1.9 - 3.4 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >=3.5 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Bilirubin (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 1.5 x ULN</td>
<td>20/79</td>
<td>(25.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 1.6 - 2.5 x ULN</td>
<td>16/79</td>
<td>(20.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 2.6 - 5.0 x ULN</td>
<td>2/79</td>
<td>(2.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 - 5.0 x Baseline</td>
<td>13/79</td>
<td>(16.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5.0 - 10.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma Glutamyl Transferase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 2.5 x ULN</td>
<td>4/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>Grade 1</td>
<td>Grade 2</td>
<td>Grade 3</td>
<td>Grade 4</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Grade 2: 2.6 - 5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 5.1 - 20.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >20.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triacylglycerol Lipase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 1.5 x ULN</td>
<td>19/79</td>
<td>(24.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 1.6 - 3.0 x ULN</td>
<td>10/79</td>
<td>(12.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 3.1 - 5.0 x ULN</td>
<td>4/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine Aminotransferase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.25 - 2.5 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 2.6 - 5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 5.1 - 10.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >10.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 - 2.5 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 - 5.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate Aminotransferase (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.25 - 2.5 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 2.6 - 5.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 5.1 - 10.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >10.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 - 2.5 x Baseline</td>
<td>1/79</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 - 5.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilirubin (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 1.5 x ULN</td>
<td>20/79</td>
<td>(25.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 1.6 - 2.5 x ULN</td>
<td>18/79</td>
<td>(22.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 2.6 - 5.0 x ULN</td>
<td>4/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >5.0 x ULN</td>
<td>1/79</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 - 5.0 x Baseline</td>
<td>28/79</td>
<td>(35.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5.0 -10.0 x Baseline</td>
<td>2/79</td>
<td>(2.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10.0 x Baseline</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prothrombin International Normalized Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1: 1.1 - 1.5 x ULN</td>
<td>33/79</td>
<td>(41.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2: 1.6 - 2.0 x ULN</td>
<td>4/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3: 2.1 - 3.0 x ULN</td>
<td>0/79</td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4: >3.0 x ULN</td>
<td>1/79</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>1.5 x Baseline</td>
<td>4/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils/Leukocytes (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5% and Baseline <5%</td>
<td>10/79</td>
<td>(41.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5% and Baseline ≥5%</td>
<td>2/79</td>
<td>(5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (gm/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukocytes (x $10^3/\mu L$)</td>
<td>Grade 1: 2.0 - 2.5</td>
<td>1/79 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 2: 1.5 - 1.999</td>
<td>1/79 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 3: 1.0 - 1.499</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 4: <1.0</td>
<td>1/79 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytes (x $10^3/\mu L$)</td>
<td>Grade 1: 0.60 - 0.65</td>
<td>3/79 (3.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 2: 0.50 - 0.599</td>
<td>1/79 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 3: 0.35 - 0.499</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 4: <0.35</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils (x $10^3/\mu L$)</td>
<td>Grade 1: 1.00 - 1.3</td>
<td>4/79 (5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 2: 0.75 - 0.999</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 3: 0.50 - 0.749</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 4: <0.50</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet (x $10^3/\mu L$)</td>
<td>Grade 1: 100 - 124.999</td>
<td>3/79 (3.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 2: 50 - 99.999</td>
<td>2/79 (2.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 3: 25 - 49.999</td>
<td>1/79 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 4: <25</td>
<td>0/79 (0.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A patient was included in the highest applicable toxicity grade per test as determined by his/her worst post-baseline test result that was also worse than baseline. For tests with additional non-graded criterion categories, a patient was also included in the highest applicable non-graded category as determined by his/her worst post-baseline abnormal test result. The baseline test result is the result from the latest sample before the start of study therapy. LLN = lower limit of normal range; ULN, upper limit of normal range.
C-SALVAGE: GZR 100 mg + EBR 50 mg + weight-based RBV
x 12 weeks in treatment-experienced patients after failure of PI + PR
Efficacy Endpoints Over Time (Full Analysis Set)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Response Rate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOT Response</td>
<td>100%</td>
<td>[95.4, 100]</td>
</tr>
<tr>
<td>SVR4</td>
<td>97.5%</td>
<td>[91.2, 99.7]</td>
</tr>
<tr>
<td>All Patients</td>
<td>96.2%</td>
<td>[89.3, 99.2]</td>
</tr>
<tr>
<td>Prior Virologic Failure</td>
<td>95.5%</td>
<td>[87.3, 99.1]</td>
</tr>
<tr>
<td>Prior Nonvirologic Failure</td>
<td>100%</td>
<td>[75.3, 100.0]</td>
</tr>
</tbody>
</table>

Grazoprevir (100 mg)
Elbasvir (50 mg)
Figure S1. Forest plot displaying SVR12 by subgroup.

<table>
<thead>
<tr>
<th>Category</th>
<th>n/m</th>
<th>SVR12 % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>76/79</td>
<td>96.2% (89.3, 99.2)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>43/46</td>
<td>93.5% (82.1, 98.6)</td>
</tr>
<tr>
<td>Female</td>
<td>33/33</td>
<td>100% (89.4, 100.0)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥65 years</td>
<td>10/11</td>
<td>90.9% (58.7, 99.8)</td>
</tr>
<tr>
<td><65 years</td>
<td>66/68</td>
<td>97.1% (89.8, 99.6)</td>
</tr>
<tr>
<td>HCV genotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>28/30</td>
<td>93.3% (77.9, 99.2)</td>
</tr>
<tr>
<td>1b</td>
<td>48/49</td>
<td>98.0% (89.1, 99.0)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>44/45</td>
<td>97.8% (88.2, 99.9)</td>
</tr>
<tr>
<td>Yes</td>
<td>32/34</td>
<td>94.1% (80.3, 99.3)</td>
</tr>
<tr>
<td>Screening HCV RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤800,000 IU/mL</td>
<td>27/29</td>
<td>93.1% (77.2, 99.2)</td>
</tr>
<tr>
<td>>800,000 IU/mL</td>
<td>49/50</td>
<td>98.0% (89.4, 99.9)</td>
</tr>
<tr>
<td>Signature NS3 RAVs at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None detected</td>
<td>44/44</td>
<td>100% (92.0, 100)</td>
</tr>
<tr>
<td>≤5× fold elevation in GZR EC_{50}</td>
<td>28/30</td>
<td>93.3% (77.9, 99.2)</td>
</tr>
<tr>
<td>>5× fold elevation in GZR EC_{50}</td>
<td>3/4</td>
<td>75.0% (19.4, 99.4)</td>
</tr>
<tr>
<td>Time since prior DAA regimen</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.1 years</td>
<td>26/29</td>
<td>89.7% (72.6, 97.8)</td>
</tr>
<tr>
<td>≥1.1 years</td>
<td>50/50</td>
<td>100% (92.9, 100)</td>
</tr>
<tr>
<td>Prior PI therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boceprevir</td>
<td>27/28</td>
<td>96.4% (81.7, 99.9)</td>
</tr>
<tr>
<td>Telaprevir</td>
<td>41/43</td>
<td>95.3% (84.2, 99.4)</td>
</tr>
<tr>
<td>Simeprevir</td>
<td>8/8</td>
<td>100% (63.1, 100)</td>
</tr>
</tbody>
</table>

One patient did not undergo sequencing of the NS3 gene.