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Abstract
Background and aims Due to common pathophysiological findings of Alzheimer’s disease (AD) with diabetes mellitus 
(DM), insulin has been suggested as a possible treatment of AD or mild cognitive impairment (MCI). A safe alternative of 
IV insulin is intranasal (IN) insulin. The aim of this systematic review is to investigate the effects of IN insulin on cognitive 
function of patients with either AD or MCI.
Methods A literature search of the electronic databases Medline, Scopus and CENTRAL was performed to identify RCTs 
investigating the effect of IN insulin administration on cognitive tasks, in patients with AD or MCI.
Results Seven studies (293 patients) met our inclusion criteria. Most studies showed that verbal memory and especially story 
recall was improved after IN insulin administration. Sometimes the effect was restricted for apoe4 (−) patients. Intranasal 
insulin did not affect other cognitive functions. However, there were some positive results in functional status and daily 
activity. Data suggested that different insulin types and doses may have different effects on different apoe4 groups. In addi‑
tion, the effects of treatment on Αβ levels differed from study to study. Finally, IN insulin resulted in minor adverse effects.
Conclusions Intranasal insulin improved story recall performance of apoe4 (−) patients with AD or MCI. Other cognitive 
functions were not affected, but there were some positive results in functional status and daily activity. Since IN insulin is a 
safe intervention, future studies should be conducted with larger doses and after proper selection of patients and insulin types.

Keywords Alzheimer’s disease · MCI (mild cognitive impairment) · Cognitive function · Intranasal insulin · Systematic 
review

Introduction

Alois Alzheimer described the first case of what would 
be defined as Alzheimer’s Disease (AD) over 100 years 
ago [1]. Recent studies have shown that the overall point 

prevalence of dementia due to AD among individuals older 
than 60 years is over 40 per 1000 persons [2]. The disease 
affects society both in terms of economy and of quality of 
life [3]. Despite the use of many different treatments, there 
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is currently no effective way to halt the progression of the 
disease [4–8].

Diabetes mellitus (DM) is a risk factor for vascular 
dementia, as well as AD [9]. Moreover, the incidence of 
any type of dementia, including that of AD, is higher among 
people with DM [10, 11]. AD shares common pathophysi‑
ological abnormalities with DM, among which is insulin 
resistance and amyloidogenesis [12]. Due to these neu‑
roendocrine abnormalities, AD has been characterized as 
“type 3 diabetes” [13]. Beta‑amyloid, which is the hallmark 
pathologic characteristic of AD has been implicated in syn‑
apse toxicity and hippocampal neuronal damage and conse‑
quently in cognitive and memory impairment; intravenous 
administration of insulin alleviates these pathophysiologic 
effects [14, 15]. It has also previously been shown, that intra‑
venous (IV) insulin administration improves memory in AD 
[16, 17]. However, the systemic side effects of IV insulin, 
mainly hypoglycemia, limit the safety and feasibility of this 
administration route. Intranasal (IN) insulin administration 
is a non‑invasive method which delivers insulin to the brain 
parenchyma very rapidly and effectively, reaching cerebral 
concentrations 100‑fold higher than intravenous delivery, 
bypassing the blood–brain barrier via paracellular transport 
[18–20]. IN insulin has negligible risk of systemic hypogly‑
cemia and its potential as treatment agent in AD has been 
explored in clinical studies [19, 21, 22]. Furthermore, MCI 
is a condition that many times evolves to AD [23]. In addi‑
tion, there is no current treatment for MCI, so treatment with 
IN insulin can involve this group of patients, too [23].

We undertook the present systematic review of rand‑
omized clinical trials, evaluating the potential beneficial 
effects of IN insulin on patients with either AD or mild 
cognitive impairment (MCI) [23]. Our primary goal was to 
investigate whether existing data support the use of IN insu‑
lin as a treatment option in MCI or Alzheimer’s dementia.

Methods

Protocol and registration

The protocol of our systematic review was prospectively reg‑
istered on PROSPERO and can be accessed at http://www.
crd.york.ac.uk/PROSP ERO/displ ay_recor d.asp?ID=CRD42 
01605 1385. We adopted the Preferred Reporting Items for 
Systematic reviews and Meta‑Analyses (PRISMA) guide‑
lines [24].

Eligibility criteria

We included studies according to the following eligibility 
criteria: (a) Double blind randomized control trials or double 
blind randomized cross‑over studies. (b) Published in the 

English language up to 10/14/2017. (c) Reporting findings in 
humans. (d) Patients with diagnosis of either MCI or AD. (e) 
Patients were treated with intranasal insulin or placebo. (f) 
Patients were tested on memory or other cognitive domains 
with the use of various different assessment tools.

Information sources

Medline, Scopus and Cochrane Central Register of Con‑
trolled trials were searched for relevant published studies 
up to 10/14/2017.

Search

In the above databases we used the following search query: 
“(Intranasal insulin OR nasal insulin) AND (Alzheimer’s 
dementia OR Alzheimer’s disease OR Alzheimer’s OR neu‑
rodegenerative disease OR cognitive impairment OR neuro‑
protective OR memory OR cognition)”.

Study selection

For identification of eligible studies, two reviewers (GK, 
AM) searched independently, based on the inclusion crite‑
ria. Any disagreement was solved with the contribution of a 
third reviewer (PM) and consensus.

Data collection process and data items

Data were extracted by two reviewers (GK, AM) indepen‑
dently and included the following fields: Title, first author, 
ID, year of publication, journal, country of origin, study 
type, study duration, total number of participants, number 
of patients that assigned IN insulin and placebo, type of IN 
insulin administered, baseline characteristics of participants, 
apoe4 gene carriage status, CSF and plasma Αβ amyloid lev‑
els, primary outcomes (verbal memory, attention, executive 
function, response inhibition, visuospatial function, func‑
tional status, daily activity and general cognition after treat‑
ment) and secondary outcomes (adverse effects and levels 
of insulin, glucose and plasma Αβ amyloid after treatment).

Risk of bias in individual studies

Risk of bias in randomized control trials was assessed by 2 
reviewers (DK and PM) independently using the Cochrane 
Collaboration’s tool for assessing risk of bias (ROB) [25]. 
The evaluation was performed for every outcome within 
each study. Disagreements between authors were solved 
through consensus. The domains assessed were bias due to 
random sequence generation and allocation concealment 
(selection bias), blinding of participants and personnel (per‑
formance bias), blinding of outcome assessment (detection 

http://www.crd.york.ac.uk/PROSPERO/display_record.asp%3fID%3dCRD42016051385
http://www.crd.york.ac.uk/PROSPERO/display_record.asp%3fID%3dCRD42016051385
http://www.crd.york.ac.uk/PROSPERO/display_record.asp%3fID%3dCRD42016051385
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bias), incomplete outcome data (attrition bias) and selective 
reporting (reporting bias). A study was characterized of high 
risk for overall ROB if at least one ROB domain was of high 
risk. All ROB domains had to be of low risk for a study to be 
characterized as of low risk. In any other case, the study was 
deemed to be at unclear overall risk. Regarding the Rosen‑
bloom et al. study, due to the cross‑over design, risk of bias 
was based on the instructions of Cochrane Handbook for 
Systematic Reviews of Interventions for cross‑over trials.

Results

Search results

The search yielded 306 potentially eligible studies. After 
duplicates were removed, 186 articles were excluded 
based on their title and abstract. Eventually, 12 full‑text 
articles were assessed for eligibility. Three articles were 
excluded because they were conference abstracts and con‑
tained incomplete information or potential duplicate results 
[26–28]. Another study was excluded as it was not an RCT 
[13]. Finally, one study was excluded because it did not pro‑
vide enough statistical data [29]. The flowchart presenting 
the selection of studies is provided in Fig. 1.

Studies’ and patients’ characteristics

Seven articles were eventually deemed eligible, including 
a total of 293 patients [30–36]; 172 were diagnosed with 
MCI and 121 with AD. The patients were assigned either 
to IN insulin or placebo group. Four studies assessed the 
effect of IN regular insulin [31–34]. In two studies IN insu‑
lin glulisine and detemir were administrated, respectively 
[30, 35]. In another study, both IN regular and detemir were 
used [36]. Three studies examined the cognitive effects of 
IN insulin acutely after treatment [32, 33, 35]. In the rest of 
the studies, cognitive tasks were applied after a long period 
of treatment [30, 31, 34, 36]. The treatment doses varied 
from study to study. In addition, the patients’ apoe4 gene 
carriage status varied from study to study. The studies’ and 
patients’ characteristics are summarized in Tables 1 and 2, 
respectively.

Risk of bias

Regarding assessment of ROB, none of the randomized con‑
trol trials (RCTs) was judged as of high risk. One study was 
deemed to be at low ROB [33]. Most studies were character‑
ized of unclear ROB due to unclear risks in “allocation con‑
cealment” and/or “blinding of participants and personnel” 
and/or “blinding of outcome assessment” domains [30–33, 
36]. Details about ROB assessment are presented in Figs. 2 

and 3. Rosenbloom et al. cross‑over study was judged as 
of low risk because the cross‑over design was suitable for 
this trial (AD is a reasonably stable condition), the order 
of receiving treatments was randomized and there were no 
carry‑over treatment effects.

Results of individual studies

Primary outcome (cognitive tasks)

Verbal memory and verbal working memory

Verbal memory was tested in all included studies with the 
assessment of the story recall task and the word list recall 
task [30–36]. Verbal working memory was tested only in one 
study, with the DOT counting N‑back test [30].

Sometimes, response to treatment differed according to 
apoe4 status [32, 33]. One study showed that compared with 
placebo, various IN insulin doses (10, 20, 40 IU) improved 
immediate recall in apoe4 (−) and worsened it in apoe4 (+) 
patients, respectively [33]. Again, after administration of 
same insulin doses, delayed recall performance had a trend 
towards worsening among apoe4 (+), whereas it was unaf‑
fected among apoe4 (−) patients [33]. In another study, 
when compared with placebo, 20 and 40 IU of IN insulin 
significantly improved performance on the composite score 
of immediate and delayed story recall, in apoe4 (−) patients 
but no changes were observed for apoe4 (+) patients [32].

In two studies, story recall improved after administration 
of 20 and 40 IU of IN insulin, but patients were not stratified 
according to apoe4 status [31, 34]. In another study, in which 
20 IU of IN insulin was given, performance on story recall 
was not affected but patients were solely apoe4 (+) [35].

Performance on immediate and delayed word list recall 
was either not affected or the results were conflicting [32, 
33, 35]. One study assessed verbal memory as a composite 
score of immediate story recall, delayed story recall, imme‑
diate word list recall and delayed word list recall [30]. Score 
worsened for apoe4 (−) and improved for apoe4 (+) patients 
[30]. However, a long‑acting form of insulin was used in this 
study (detemir) as opposed to regular insulin which is short‑
acting [30]. In another study, a composite score of delayed 
story recall and delayed word list recall was used [36]. This 
was the only study to implement two types of IN insulin 
(regular, detemir) for comparison with placebo [36]. Intra‑
nasal regular insulin was beneficial for apoe4 (−), while IN 
detemir improved performance in apoe4 (+) patients.

Verbal working memory was assessed only in one study 
[30]. Performance was improved after the 40 but not the 
20 IU dose, regardless of apoe4 status [30]. The effects of IN 
insulin on verbal memory are presented in Table 3.
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Attention, executive function and response 
inhibition

Attention, executive function and response inhibition were 
tested in five studies [30, 32–35]. In four of them, the 
assessment of attention and response inhibition was done 
with SCWT (Stroop Color Word Test) [30, 32–34]. In gen‑
eral, no significant effects were observed in SCWT after 
administration of different types and doses of intranasal 

insulin [30, 32–35]. Significant improvement was noticed 
only in one study, but the effect was restricted to discord‑
ant items [34]. There was no effect on concordant items or 
the number of errors [34].

Another study assessed attention/executive function 
with the use of “Trails B test”, “RBANS digit span for‑
ward” and “RBANS digit span backward” [35]. Signifi‑
cantly improved performance was observed only for the 
first task [35] (Table 4).
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Table 1  Characteristics of included studies

RCT  randomized clinical trial, MCI mild cognitive impairment, AD Alzheimer’s disease, IN intranasal, Regular insulin a short acting type of 
insulin, Glulisine a rapid acting insulin analogue, Detemir a long‑acting insulin analogue

First author and year Country Study type Treatment duration 
(days)

Number of 
patients (total/
MCI/AD)

Type of IN insulin 
given

IN insulin dosages (IU)

Reger [32] USA RCT Short term (1) 26/13/13 Regular 20/40
Reger [34] USA RCT Long term (21) 25/14/11 Regular 20
Reger [33] USA RCT Short term (1) 33/20/13 Regular 10/20/40/60
Craft [31] USA RCT Long term (120) 104/64/40 Regular 20/40
Rosenbloom [35] USA Cross ‑ over RCT Short term (1) 9/0/9 Glulisine 20
Claxton [30] USA RCT Long term (21) 60/39/21 Detemir 20/40
Craft [36] USA RCT Long term (120) 36/22/14 Regular/Detemir 40

Table 2  Demographic 
characteristics of patients in 
each study

NR not reported
In Craft et al.: age, BMI and education were expressed as mean (SEM)
In Rosenbloom et al.: age was expressed as mean (range)
In rest of the studies: age, BMI and education were expressed as mean (SD)
In Claxton et al.: age, BMI and education were not reported. However, it was stated that placebo did not 
differ from treatment group

First author and year Apo e4 status (±) Gender (f/m) Age (years) BMI (kg/m2) Education (years)

Reger [32] 12/14 13/13 76.7 (5.5) 24.7 (2.8) 14.3 (3.2)
Reger [34] NR NR 78.2 (1.6) 26.5 (1.2) 15.2 (0.8)
Reger [33] 11/22 NR 76.6 (1.6) 26.6 (0.9) 14.6 (0.7)
Craft [31] 57/47 45/59 68.9 (1.5) 27 (0.8) 15.7 (0.5)
Rosenbloom [35] 0/9 0/9 72 (65–85) NR NR
Claxton
 [30]

NR NR NR NR NR

Craft
2017 [36]

14/22 17/17 68.7 (8.6) 28.3 (5.3) 15.6 (2.4)

Fig. 2  Risk of bias graph 
authors’ judgements about each 
risk of bias item, presented as 
percentage across all included 
studies
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Visuospatial function

Visuospatial function was assessed in four studies [30, 32, 
33, 35]. In general, no significant effects were observed [30, 
32, 33, 35]. Exception to this was the significantly improved 
performance regardless of apoe4 status on BVTR (Benton 
Visual Retention Test) after the administration of 40 IU 
of IN insulin detemir, regardless of apoe4 status [30]. The 
effect was not observed for the 20 IU dose [30] (Table 5).

Functional status, daily activity and global 
cognition

Functional status and daily activity were assessed in four 
studies with the use of DSRS (Dementia Severity Rating 
Scale) or Alzheimer’s Disease Cooperative Study‑activities 
of daily living (ADCS‑ADL) scores, respectively [30, 31, 
34, 36]. Regarding DSRS scores, the results were conflicting 
[30, 31, 34, 36]. ADCS‑ADL scale scores were preserved 
for AD patients of the insulin‑assigned group but declined 
for the AD patients of the placebo group; scores of MCI 
patients were all unaffected regardless of group assignment 
[31]. Craft et al. used a measure of global cognition named 

ADAS‑Cog scale, in their two studies [31, 36]. Improve‑
ments were found only in one study [31] (Table 6).

Secondary outcomes

Effects on Αβ40 and Αβ42

Two studies reported the effects of IN insulin on plasma 
Αβ40 and Αβ42 amyloid levels [33, 34]. In addition, two 
studies reported the effects on the CSF Αβ40 and Αβ42 lev‑
els [31, 36]. The results were very conflicting [31, 33, 34, 
36] (Table 7).

Metabolic data

Four studies reported the effects of IN insulin treatment on 
plasma glucose and insulin levels [32–35]. In three of them, 
no significant change in plasma glucose or insulin levels 
were observed after treatment [32, 33, 35]. In Rosenbloom 
et al.’s study, there was also no change in fasting glucose 
or insulin levels after 21 days of treatment [35]. However, 
reduced postprandial plasma insulin levels were observed for 
treatment group when compared to placebo [F (1, 20 = 4.43, 
p = 0.0481)] [35].

Adverse effects

Adverse effects included nose‑related side effects (minor 
bleeding, soreness, rhinitis, sneezing), headache, dizziness, 
weakness and upper respiratory tract infections. A complete 
list of adverse effects is depicted in Table 8.

Discussion

In this systematic review of randomized clinical trials, we 
found evidence that IN insulin may have a beneficial effect 
on verbal memory, probably modified by apoe4 allele carrier 
status; the effect was favorable for apoe4 (−) patients but not 
for apoe4 (+) patients. For the rest cognitive domains (visu‑
ospatial function, attention, executive function, response 
inhibition and everyday functioning) there was not any clear 
effect by IN insulin administration. Of note, the expected 
absence of systemic side effects of IN insulin treatment was 
confirmed by our findings.

Response to treatment and apoe4 status

Of all cognitive domains tested, verbal memory (story and/
or word list recall) was affected the most. Interestingly, the 
patients’ apoe4 allele carrier status appeared to determine 
the response to treatment, which is in accordance with 

Fig. 3  Risk of bias summary
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Table 3  Effects of IN insulin on verbal memory

Dose (IU), type 
of IN insulin

Duration of 
intervention 
(days)

Study (1st author, year) Cognitive task Main findings

10 IU Regular Short (1) Reger [33] (i) Story recall Improved memory for apoe4 (−) in com‑
parison to worsened memory for apoe4 
(+) [p = 0.0484]

(d) story recall Unchanged memory for apoe4 (−) 
in comparison to apoe4 (+) whose 
performance had a worsening trend 
[p = 0.1061]

(i) word list recall Reduced memory for apoe4 (−) and 
apoe4 (+), no significant difference 
between the two groups

(d) word list recall Improved memory for apoe4 (−) and 
reduced memory for apoe4 (+), no 
significant difference between the two 
groups

20 IU Regular Short (1) Reger [32] (i) + (d) story recall Significant memory improvement for 
apoe4 (−) [p = 0.00006]. No significant 
change for apoe4 (+)

(i) + (d) word list recall No change in memory for any apoe4 
group

Short (1) Reger [33] (i) story recall
(d) story recall Unchanged memory for apoe4 (−) 

in comparison to apoe4 (+) whose 
performance had a worsening trend 
[p = 0.0739]

(i) word list recall Improved memory for both apoe4 (−) and 
apoe4 (+), with a trend of significant 
improvement for apoe4 (−) in compari‑
son to apoe4 (+) [p = 0.0637]

(d) word list recall
long (21) Reger [34] (i) + (d) story recall Significant memory improvement of 

insulin treated relative to placebo 
(p = 0.0374). Limitation no apoe4 
groups reported

long (120) Craft [31] (d) story recall Improved memory (treatment 
group × time interaction: p = 0.02, 
Cohen f = 0.36).

Limitation no apoe4 groups reported
20 IU Glulisine Short (1) Rosenbloom [35] (i) + (d) story recall No change in memory

(i) + (d) list recall No change in memory
Note all patients finally analyzed, were 

apoe4 (+) and males
20 IU Detemir Long (21) Claxton [30] Sum of [(i) + (d) story recall] 

+[(i) + (d) word list recall]
No change in memory for both apoe4 

groups
Dot counting N back No change in memory. Limitation no 

apoe4 groups reported
40 IU Regular Short (1) Reger [32] Sum of (i) + (d) story recall Significant memory improvement for 

apoe4 (−) [p = 0.0013]. No significant 
change for apoe4 (+)

Sum of (i) + (d) word list recall Significant memory improvement for 
the apoe4 (−) [p = 0.0323]. Sig‑
nificant worsening for the apoe4 (+) 
[p = 0.0044]

Short (1) Reger [33] (i) Story recall Improved memory for apoe4 (−) in com‑
parison to worsened memory for apoe4 
(+) [p = 0.0273]
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previous studies [37]. In particular, apoe4 (−) patients were 
positively affected by treatment especially when they were 
tested on story recall component of verbal memory [32, 33, 
36]. On the other hand, patients with apoe4 (+) status, had 
either unchanged or worse performance on verbal memory 
tasks after treatment [32, 33, 35]. Negative for apoe4 gene, 
AD patients are known to have increased insulin resistance 
and decreased glucose utilization, in comparison to apoe4 
(+) patients [38]. Apolipoprotein4 (−) patients require 
higher insulin doses than for apoe4 (+) patients, for mem‑
ory enhancement [37]. However, they have greater mem‑
ory improvements in hyperinsulinemic states and this may 

partially explain the selective positive response of apoe4 
(−) patients to IN insulin [39]. Our data showed that IN 
insulin doses of 10 or 20 IU were potent enough to facili‑
tate verbal memory and especially story recall component 
[31–34]. Generally, absence of apoe4 gene in AD or MCI 
patients is associated with better responses to various AD 
treatments, especially in high doses [40–42]. In contrast 
to apoe4 (−) patients, it is hypothesized that insulin may 
worsen functional and metabolic brain abnormalities that 
apoe4 (+) patients are shown to have [43, 44]. In addition, 
there is evidence of mitochondrial dysfunction in posterior 
cingulate gyrus of apoe4 (+) carriers [45]. Such a finding 

Table 3  (continued)

Dose (IU), type 
of IN insulin

Duration of 
intervention 
(days)

Study (1st author, year) Cognitive task Main findings

(d) story recall Unchanged memory for apoe4 (−) 
in comparison to apoe4 (+) whose 
performance had a worsening trend 
[p = 0.0595]

(i) word list recall Reduced memory for both apoe4 (−) and 
apoe4 (+), no significant difference 
between the two groups

(d) word list recall Reduced memory for apoe4 (−) and 
improved for apoe4 (+), no signifi‑
cant difference between the two group 
performance

Long (120) Craft [31] (d) story recall Unchanged memory. Limitation no apoe4 
groups reported

Long (120) Craft [36] Sum of (d) story recall
+ (d) word list recall

Improved memory for apoe4 (−) relative 
to apoe4 (+) at both 2 and 4 months of 
treatment (ps < 0.05)

40 IU Detemir Long (21) Claxton [30] Sum of [(i) + (d) story recall] + 
[(i) + (d) word list recall]

Reduced memory for apoe4 (−) 
[p = 0.02], improved memory for apoe4 
(+) [p = 0.02]

Dot counting N back Improved memory (p = 0.03). Limitation 
no apoe4 groups reported

Long (120) Craft [36] Sum of (d) story recall + (d) word list 
recall

Improved memory for apoe4 (+) com‑
pared to placebo, after 2 months of 
treatment (p = 0.04) but no change at 
4 months

Unchanged memory for apoe4 (−) at 2 
and 4 months of treatment

60 IU Regular Short (1) Reger [33] (i) Story recall Reduced memory for apoe4 (−) and 
apoe4 (+), no significant difference 
between the two groups

(d) story recall Reduced memory for apoe4 (−) and 
apoe4 (+), no significant difference 
between the two groups

(i) word list recall Reduced memory for apoe4 (−), improved 
for apoe4 (+), no significant difference 
between the two groups

(d) word list recall Reduced memory for both apoe4 (−) and 
apoe4 (+), no significant difference 
between the two groups

(i) immediate, (d) delayed
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could explain the unresponsiveness of apoe4 (+) patients to 
IN insulin. Studies have demonstrated a relative increase in 
apoe4 carriage among individuals with AD [46]. These facts 
may restrict IN therapy application and may at least require 
appropriate selection of candidates for treatment. However, 
in two included studies in which a long‑acting IN insulin 
(detemir) was used, there was an improvement for apoe4 
carriers in verbal memory, but not for apoe4 (−) [30, 36]. 
This evidence provides hope for the treatment of apoe4 (+) 
patients and it could mean that different types of IN insulin 
are required for different apoe4 groups.

Performance in cognitive domains such as visuospatial 
function, attention, executive function and response inhibi‑
tion stayed unaffected [30–35]. One possible explanation is 
that since these functions have already declined up to some 
point in AD or MCI patients, the neuropsychological tests 
may not be sensitive enough to show further decline (or 
improvement).

Intranasal insulin had some beneficial effects on general 
functioning of MI patients, tested with DSRS [30, 31, 34, 
36]. Regarding ADCS‑ADL scale, a daily activity testing 
tool, there was a beneficial effect for AD patients only, who 
preserved their function relative to placebo. The same was 
not true for MCI patients [31, 33, 34]. This may be attributed 

to the fact that ADCS‑ADL scale was originally designed 
for AD patients only, which are by definition considered to 
be at a more advanced stage cognitive decline than MCI 
patients [23]. Finally, performance on a general cognition 
measure called ADAS‑cog varied among studies [31, 36, 
47]. Such inconsistencies between studies can be attributed 
to the small number of subjects participating in those trials 
[31, 36].

Types and doses of IN insulin

Studies on healthy subjects have shown that IN regular insu‑
lin has beneficial effect on memory [48]. Such benefits were 
shown in our review mostly for story recall task in apoe4 (−) 
patients, actually for all possible doses (10, 20, 40, 60 IU) 
and for both short‑ and long‑term treatments [31–34, 36]. It 
has been suggested that rapid‑acting IN insulin is superior 
to regular insulin [49]. However, this was not confirmed by 
our included study which used glulisine (rapid‑acting insu‑
lin) [35]. Of interest, this study included patients that were 
exclusively apoe4 (+) which is known to be “difficult” for 
treatment subgroup [45]. This may explain why findings 
were not in accordance with previous studies [35, 49].

Table 4  Effects of IN insulin on attention, executive function and response inhibition

SCWT  Stroop Color Word Test

Dose (IU), type 
of IN insulin

Duration of 
intervention 
(days)

Study (1st author, month) Cognitive task Main findings

10 IU Regular Short (1) Reger [33] SCWT No significant change in performance for any apoe4 
group

20 IU Regular Short (1) Reger [32] SCWT No significant change in performance for any apoe4 
group

Short (1) Reger [33] SCWT No significant change in performance for any apoe4 
group

long (21) Reger [34] SCWT Improved average performance on the selec‑
tive attention test. The effect was restricted for 
discordant items (p = 0.0108). No change in 
performance for concordant items (0.9836) or in 
error number (p = 0.8383)

Limitation no apoe4 groups reported
20 IU Glulisine Short (1) Rosenbloom [35] Trails B test Fewer errors (p < 0.05)

RBANS digit span forward No effect on digit span forward (p = 0.35)
RBANS digit span backward Trend toward worsening performance (p = 0.051) 

on digit span backward
Note All patients were apoe4 (+)

20 IU Detemir Long (21) Claxton [30] SCWT No effect for any apoe4 group
40 IU Regular Short (1) Reger [32] SCWT No change in performance for any apoe4 group

Short (1) Reger [33] SCWT No significant change in performance for any apoe4 
group

40 IU Detemir Long (21) Claxton [30] SCWT No change in performance for any apoe4 group
60 IU Regular Short (1) Reger [33] SCWT No significant change in performance for any apoe4 

group
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Despite the unresponsiveness of apoe4 carriers to 
rapid‑ or short‑acting types of IN insulin (regular, gluli‑
sine), there was a beneficial effect after administration 
of a long‑acting IN insulin analogue (detemir) on verbal 
memory [30, 36]. It is known that insulin detemir binds 
plasma albumin [50]. In addition, apoe4 carriers with AD 
have a tendency for post‑translational modifications of 
albumin which in turn may affect the binding of detemir 
[51, 52]. Thus, special pharmacokinetic properties of insu‑
lin determir may be responsible for its positive effects on 
apoe4 (+) patients. In addition, it has been shown that 
this type of insulin exerts strong CNS effects which sup‑
ports further the possible use of it in the resistant to treat‑
ment apoe4 (+) patients [53]. Of interest, the benefits were 
observed for the 40 IU but not the 20 IU dose [30, 36]. 
This could mean that low doses of detemir may not be 

enough for improvement of cognitive functions in apoe4 
(+) patients, but there is need for further studies to confirm 
these findings.

Safety issues

Studies on healthy subjects have shown that IN insulin is 
well tolerated even in high dose (60 IU daily) and for a long 
period of time (3 weeks) [54]. The observation that serious 
adverse effects are almost absent after IN insulin adminis‑
tration has already been underlined in previous studies [20, 
55]. That was also confirmed by the findings of the pre‑
sent review. The only adverse effects had to do with nasal 
symptoms, which may be due to the route of administra‑
tion rather than the drug itself [30–32, 34, 36]. Of great 
importance is that the risk of hypoglycemia was practically 

Table 5  Effects of IN insulin on visuospatial function

BVTR Benton Visual Retention Test, SOPT Self‑Ordered Pointing Task, RBANS Repeatable Battery for the Assessment of Neuropsychological 
Status

Dose (IU), type 
of IN insulin

Duration of 
intervention 
(days)

Study (1st author, year) Cognitive task Main findings

10 IU Regular Short (1) Reger [33] SOPT No significant change in performance for 
any apoe4 group

Digit symbol No significant change in performance for 
any apoe4 group

20 IU Regular Short (1) Reger [32] SOPT No change in errors for any apoe4 group
Visual working memory No change in speed of target identification 

for any apoe4 group
Short (1) Reger [33] SOPT No significant change in performance for 

any apoe4 group
Digit symbol No significant change in performance for 

any apoe4 group
20 IU Glulisine Short (1) Rosenbloom [35] RBANS line orientation Similar scores for treatment and placebo 

groups
RBANS figure copy No change in performance

Note All patients finally analyzed were 
apoe4 (+) and males

20 IU Detemir Long (21) Claxton [30] BVTR (visuospatial working memory) No effect for any apoe4 group
40 IU Regular Short (1) Reger [32] SOPT No change in errors for any apoe4 group

Visual working memory No change in speed of target identification 
for any apoe4 group

Short (1) Reger [33] SOPT No change in performance for any apoe4 
group

Digit symbol No change in performance for any apoe4 
group

40 IU Detemir Long (21) Claxton [30] BVTR (visuospatial working memory) Improved performance (p = 0.04). No 
interactions with apoe4 status were 
noticed

60 IU Regular Short (1) Reger [33] SOPT No change in performance for any apoe4 
group

Digit symbol No change in performance for any apoe4 
group
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negligible, finding that is also in accordance with previous 
data [30–32, 34, 36, 54]. The minimal risk of hypoglycemia 
by IN insulin has also been demonstrated in studies where 
this type of treatment failed to lower glucose in diabetic 
patients [56–59]. Therefore, IN insulin is a safe treatment 
for patients with AD or MCI.

Limitations

Intranasal insulin is a novel treatment for patients with AD 
or MCI and has been only tested in few clinical trials. The 
present systematic review included a total of 293 patients. 
Such a small sample size does not allow for safe conclu‑
sions. Additionally, all included studies took place at one 
country (USA), thus there is limitation in generalizability 
of the results.

Another limitation of the present review is the heteroge‑
neity of the included studies. First of all, there was hetero‑
geneity in respect to patients’ characteristics such as gender, 
age and apoe4 status (see Table 1). In addition, different 
cognitive domains were assessed in each study, while cog‑
nitive tasks varied even among studies assessing the same 

cognitive domains (see Tables 3, 4, 5, 6). Moreover, types 
and doses of insulin varied between studies (see Table 1). 
Finally, the duration of treatment was heterogeneous, too 
(days of treatment varied from 1 to 120). Consequently, 
quantitative analysis (meta‑analysis) of the included studies 
was not feasible.

Conclusions

The present systematic review examined the effects of IN 
insulin administration on cognitive function of patients with 
AD or MCI. Collective evidence shows improvement in ver‑
bal memory and especially story recall, while IN insulin 
effects on other aspects of cognition was neutral. The data 
suggest that the treatment effect is modified by the apoe4 
gene carriage status of patients: Apoe4 (−) patients showed 
more consistent cognitive gains in comparison to apoe4 
(+) patients, whose performance either remained stable or 
declined after IN insulin treatment. However, there is evi‑
dence hinting that even these patients may benefit from IN 
insulin if a long‑acting form of insulin rather than a rapid or 

Table 6  Effects of IN insulin on functional status (DSRS), daily activity (ADCS‑ADL) and global cognition (ADAS‑Cog)

DSRS Dementia Severity Rating Scale, ADCS-ADL Alzheimer’s disease Cooperative Study—activities of daily living

Dose (IU), 
type of IN 
insulin

Duration of 
intervention 
(days)

Study (1st year, author) Cognitive task Main findings

20 IU Regular Long (21) Reger [34] DSRS Greater improvement for those with severe impairment at 
baseline

Long (120) Craft [31] DSRS Improvement (treatment group × time interaction: p = 0.01, 
Cohen f = 0.38)

ADCS‑ADL scale Overall no improvement. Participants with AD preserved 
function in comparison to placebo whose function declined 
(p = 0.01, cohen f = 0.45) Participants with MCI showed no 
change

ADAS‑Cog Less decline in treatment group than placebo group (overall 
treatment × time interaction. p = 0.04, cohen f = 0.27)

Note Patients were mixed apoe4 (±)
20 IU Detemir Long (21) Claxton [30] DSRS No effect for any apoe4 group
40 IU Regular Long (120) Craft [31] DSRS Improvement (treatment group × time interaction: p = 0.01, 

Cohen f = 0.41)
ADCS‑ADL scale Overall no improvement. Participants with AD preserved 

function in comparison to placebo whose function declined 
(p = 0.02, cohen f = 0.43). Participants with MCI showed no 
change

ADAS‑Cog Less decline in treatment group than placebo group (overall 
treatment × time interaction. p = 0.002, cohen f = 0.40)

Note Patients were mixed apoe4 (±)
DSRS No effect for any apoe4 group

Long (120) Craft [36] ADAS‑Cog No effect for any apoe4 group
40 IU Detemir Long (21) Claxton [30] DSRS No effect for any apoe4 group

Long (120) Craft [36] DSRS No effect for any apoe4 group
ADAS‑Cog No effect for any apoe4 group
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short‑acting form is used. Current data are not definite on 
whether IN insulin can be used as treatment for dementia 
of AD or MCI but provide strong evidence for its safety as 
the systemic side effects and especially hypoglycemia were 

essentially negligible. Proper selection of patients, stratifi‑
cation by disease stage, apoe4 carrier status and different 
types of insulin and doses will be needed in future studies 
for clearer results.

Table 7  Effects of IN insulin on Αβ

Dose (IU), 
type of IN 
insulin

Duration of 
intervention 
(days)

Study (1st 
author, 
year)

Main findings

10 IU Regular Short (1) Reger [33] Plasma Αβ42 increased significantly regardless of apoe4 status (p = 0.0213)
No significant change in plasma Αβ40

20 IU Regular Short (1) Reger [33] No significant change in Αβ42 for any apoe4 group
No significant change in Αβ40 for any apoe4 group

Long (21) Reger [34] Fasting levels
No change in Αβ42 (p = 0.5373)
Increased Αβ40 for treatment group, whereas no change for placebo group [F(1, 22) = 4.54, 

p = 0.0444, f2 = 0.20]
Postprandial levels
Decreased Αβ42 in treatment group but same in placebo group [F(1, 22) = 4.99, p = 0.0554, 

f2 = 0.19)]
Unaffected Αβ40 levels (p = 0.2076)

Long (120) Craft [31] No change in Αβ42, Αβ40 of insulin group as a whole
40 IU Regular Short (1) Reger [33] No significant change in Αβ42 for any apoe4 group

No significant change in Αβ40 for any apoe4 group
Long (120) Craft [31] No change in CSF Αβ42, Αβ40 of insulin group as a whole
Long (120) Craft [36] No change in CSF Αβ42 for any apoe4 group

40 IU Detemir Long (120) Craft [36] No change in CSF Αβ42 for any apoe4 group
60 IU Regular Short Reger [33] Plasma Αβ42 increased significantly for apoe4 (−) [p = 0.0071], but did not change for apoe4 (+)

No significant change in Αβ40 for any apoe4 group

Table 8  Adverse effects of IN 
insulin

NR not reported, URI upper respiratory infections, GI gastrointestinal

Study (1st author, year) IN insulin group Placebo group

Reger [32] 1/13 minor nosebleed
1/13 nose soreness for 24 h

None

Reger [33] NR NR
Reger [34] 1/13 headache

1/13 nasal dripping
1/13 weakness
1/13 hypoglycemia

No headache
2/13 nasal dripping
No weakness
1/13 sneezing

Craft [31] 8/74 lightheadedness or dizziness
6/74 headache
9/74 nosebleed
12/74 rhinitis
3/74 URI
2/74 fall
3/74 rash

3/30 lightheaded‑
ness or dizziness

1/30 headache
No nosebleed
1/30 rhinitis
1/30 URI
2/30 fall
2/30 rash

Rosenbloom [35] None None
Claxton [30] Some cases of mild rhinitis and dizziness

No cases of hypoglycemia
Craft [36] 7/24 rhinitis 1/12 rhinitis

2/24 headache 0/12 headache
2/24 dizziness 0/12 dizziness
1/24 GI symptoms 1/12 GI symptoms
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