Supplementary Appendix

Supplement to: Grinspoon SK, Fitch KV, Zanni MV, et al. Pitavastatin to prevent cardiovascular disease in HIV infection. N Engl J Med 2022;389:687-99. DOI: 10.1056/NEJMoa2304146

This appendix has been provided by the authors to give readers additional information about the work.

TABLE OF CONTENTS

List of REPRIEVE Site Investigators	3
Section 1: Governance	8
REPRIEVE Trial Leadership and Stakeholders	8
REPRIEVE Committee Membership	9
Contributions to Design, Conduct and Reporting of REPRIEVE	14
Blinding Status of the REPRIEVE Biostatistics Team	15
Author Affiliations	15
Section 2: Supplemental Methods	20
Inclusion Criteria	20
Exclusion Criteria	21
Diet, Activity, and Smoking Cessation Guidance	23
Primary and Secondary Outcome Measures	24
Interim Monitoring Plan and Monitoring Benchmarks	25
Statistical Methods	26
Data and Statistical Considerations	26
Outcome Measures	26
Analysis Population	27
Statistical Significance	27
Analysis Approaches	27
Sensitivity Analyses for Unknown Primary Endpoint Status (see Figure S5)	29
Methods for Lipids and Glucose	29
Section 3: Supplementary Figures and Tables	
Figure S1: CONSORT Diagram	30
Figure S2: Adherence by Participant Report	31
Figure S3: Incidence of First MACE and Other Efficacy Endpoints	
Figure S4: Treatment Effect from Adjusted Stratified Cox Proportional Hazards Models	33
Figure S5: Sensitivity Analyses for the Primary Endpoint to Assess Impact of Missing Data	34
Figure S6: Fasting Glucose Over Time	35
Figure S7: Muscle Ache and Weakness by Participant Report*	

Figure S8: 5-year Number Needed To Treat by ASCVD Risk Score at Enrollment	
Table S1: Baseline Characteristics by Treatment Group and Global Burden of Disease Super F	Region38
Table S2: Details of First MACE Endpoints	41
Table S3: Details of MACE and Death Endpoints Captured from Vital Status Follow-up	42
Table S4: Details of Non-CV Deaths	42
Table S5: Incidence of Non-Fatal Heart Failure	42
Table S6: Non-Fatal Serious Adverse Events by MedDRA System Organ Class	43
Table S7: All Adverse Events by MedDRA System Organ Class and Higher-Level Term	44
Table S8: Details of Myalgia and Myopathy Events	45
Table S9: Representativeness of Study Participants	46
References	49

List of REPRIEVE Site Investigators

The following investigators participated in the REPRIEVE trial, listed by country and clinical site with numbers of participants enrolled:

Country (n)		
CRS Name (n)	CRS Leader	
Botswana (n=281)		
Gaborone CRS (n=281)	Dr. Ayotunde Omoz-Oarhe	
Brazil (n=1099)		
Centro de Pesquisas Clínicas IC-HCFMUSP CRS (n=53)	Dr. Esper Georges Kallas	
Centro de Referencia e Treinamento DST/AIDS CRS (n=99)	Dr. Jose Valdez Ramalho Madruga	
HGNI HIV Family Care Clinic - HHFCC CRS (n=165)	Dr. Jose Henrique da Silva Pilotto	
Hospital Federal dos Servidores do Estado CRS (n=37)	Dr. Esau Custodio Joao	
Hospital Nossa Senhora da Conceicao CRS (n=115)	Dr. Breno Riegel Santos	
Instituto de Infectologia Emilio Ribas CRS (n=65)	Dr. Luiz Carlos Pereira Jr.	
Instituto de Pesquisa Clinica Evandro Chagas (IPEC) CRS (n=117)	Dr. Beatriz Grinsztejn	
Projeto Praça Onze Pesquisa em Saúde CRS (n=58)	Dr. Mauro Schechter	
School of Medicine, Federal University of Minas Gerais CRS (n=99)	Dr. Jorge A. Pinto	
Tropical Medicine Foundation Dr. Heitor Vieira Dourado CRS (n=291)	Dr. Marcus Vinícius Guimarães de Lacerda	
Canada (n=131)		
Centre hospitalier de l'Université Laval CRS (n=5)	Dr. Sylvie Trottier	
Chronic Viral Illness Service CRS (n=21)	Dr. Julian Falutz	
Hamilton Health Sciences – Special Immunology Services Clinic CRS (n=22)	Dr. Marek Smieja	
Maple Leaf Research CRS (n=8)	Dr. Graham H. R. Smith	
Toronto General Hospital CRS (n=31)	Dr. Sharon Lynn Walmsley	
Vancouver ID Research & Care Centre Society CRS (n=44)	Dr. Brian Conway	
Haiti (n=140)		
GHESKIO Institute of Infectious Diseases and Reproductive Health (GHESKIO - IMIS) CRS (n=59)	Dr. Damocles Patrice Severe	
Les Centres GHESKIO Clinical Research Site (GHESKIO- INLR) CRS (n=81)	Dr. Vanessa Rouzier	
India (n=504)		
Byramjee Jeejeebhoy Medical College (BJMC) CRS (n=250)	Dr. Vidya Mave	
Chennai Antiviral Research and Treatment (CART) CRS (n=254)	Dr. Nagalingeswaran Kumarasamy	
Peru (n=148)		
Barranco CRS (n=90)	Dr. Javier R. Lama	
San Miguel CRS (n=58)	Dr. Javier Antonio Valencia	
South Africa (n=570)		
Durban International CRS (n=161)	Dr. Umesh Gangharam Lalloo	
Family Clinical Research Unit (FAM-CRU) CRS (n=99)	Dr. Mark F. Cotton	

Soweto ACTG CRS (n=83)	Dr. Lerato Mohapi	
University of Cape Town Lung Institute (UCTLI) CRS (n=83)	Dr. Rodney Dawson	
University of the Witwatersrand Helen Joseph (WITS HJH) CRS (n=144)	Dr. Sharlaa Badal-Faesen	
Spain (n=213)	•	
Hospital Clínico San Carlos (n=25)	Dr. Vicente Estrada	
Hospital 12 de Octubre (n=13)	Dr. Federico Pulido Ortega	
Hospital Bellvitge (n=25)	Dr. Maria Saumoy Linares	
Hospital Clínic Barcelona (n=19)	Dr. Esteban Martinez and Dr. Ana Gonzalez Gordon	
Hospital de Basurto (n=9)	Dr. Mireia de la Pena	
Hospital General Universitario de Alicante (n=13)	Dr. Joaquín Portilla	
Hospital General Universitario De Elche (n=28)	Dr. Mar Masia	
Hospital Germans Trias i Pujol (n=22)	Dr. Eugenia Negredo	
Hospital Gregorio Marañón (n=9)	Dr. Juan Berenguer	
Hospital La Paz (n=21)	Dr. Jose Ignacio Bernardino	
Hospital Ramón y Cajal (n=6)	Dr. Jose Luis Casado Osorio	
Hospital Vall d'Hebron (n=12)	Dr. Adrià Curran Fabregas	
Hospital Virgen de la Victoria (n=11)	Dr. Cristina Gómez	
Thailand (n=590)		
Chiang Mai University HIV Treatment (CMU HIV Treatment) CRS (n=178)	Dr. Khuanchai Supparatpinyo	
Thai Red Cross AIDS Research Centre (TRC-ARC) CRS (n=412)	Dr. Anchalee Avihingsanon	
Uganda (n=181)		
Joint Clinical Research Centre (JCRC)/Kampala CRS (n=181) Dr. Cissy Mutuluuza Kityo		
United States of America (n	=3787)	
550 Clinic: University of Louisville CRS (n=36)	Dr. Julio Ramirez	
Abbott Northwestern Hospital CRS (n=32)	Dr. Badrinath Konety	
AIDS Healthcare Foundation (AHF) South Beach (n=1)	Dr. Michael Wohlfeiler	
AHF-The Kinder Medical Group CRS (n=6)	Dr. Clifford Kinder	
AIDS Research and Treatment Center of the Treasure Coast CRS (n=35)	Dr. Gerald Pierone	
Alabama CRS (n=87)	Dr. Sonya L. Heath	
Augusta University Research Institute, Inc. CRS (n=5)	Dr. Rodger D. MacArthur	
Baystate Infectious Diseases Clinical Research CRS (n=34)	Dr. Daniel J. Skiest	
Bluegrass Care Clinic/University of Kentucky Research Foundation CRS (n=68)	Dr. Alice Thornton	
Boston Medical Center (n=23)	Dr. Nina Lin	
Brigham and Women's Hospital Therapeutics Clinical Research Site (BWH TCRS) CRS (n=45)	Dr. Jennifer Manne	
Capital Medical Associates CRS (n=17)	Dr. Bruce Rashbaum	
Case CRS (n=93)	Dr. Jeffrey M. Jacobson	
Center of Translational AIDS Research, Temple University (n=9)	Dr. Jeffrey M. Jacobson	

Chapel Hill CRS (n=86)	Dr. David Alain Wohl
Cincinnati CRS (n=112)	Dr. Carl J. Fichtenbaum
Columbia Physicians & Surgeons (P&S) CRS (n=67)	Dr. Magdalena E. Sobieszczyk
Community AIDS Network/Comprehensive Care Clinic CRS (n=12)	Dr. Tanya Schreibman
Cooper University Hosp. CRS (n=23)	Dr. John D. Baxter
Dallas VA Medical Center CRS (n=14)	Dr. Roger Bedimo
DC Veterans Medical Center (n=3)	Dr. Cynthia Gibert
Denver Public Health CRS (n=88)	Dr. Edward M. Gardner
Department of Internal Medicine, University of Iowa Hospitals & Clinics CRS (n=15)	Dr. Jack T. Stapleton
Division of Infectious Diseases Clinical Research Center- Drexel University CRS (n=35)	Dr. Elliot Goodenough
Duke University Medical Center CRS (n=68)	Dr. Nwora Lance Okeke
Eisenhower Health Center at Rimrock CRS (n=11)	Dr. Ann E Stapleton
Florida Department of Health – Hillsborough County (n=73)	Dr. Charurut Somboonwit
Georgetown University CRS (GU CRS) (n=38)	Dr. Princy Kumar
Greensboro CRS (n=70)	Dr. Cornelius Van Dam
Harbor UCLA CRS (n=54)	Dr. Eric S Daar
Henry Ford Hospital CRS (n=13)	Dr. Indira Brar
Houston AIDS Research Team CRS (n=70)	Dr. Roberto Arduino
Indiana University Infectious Diseases Research CRS (n=11)	Dr. Samir Gupta
Infectious Disease Clinical and Translational Research Center (CTRC) CRS (n=47)	Dr. Judith A. Aberg
Inova Heart and Vascular Institute CRS (n=39)	Dr. Christopher deFilippi
James J Peters VA Medical Center CRS (n=14)	Dr. Sheldon Theodore Brown
Johns Hopkins University CRS (n=45)	Dr. Charles W. Flexner
Los Angeles LGBT Center CRS (n=52)	Dr. Robert K. Bolan
Malcom Randall VA Medical Center CRS (n=6)	Dr. Gary P. Wang
Massachusetts General Hospital CRS (MGH CRS) (n=57)	Dr. Rajesh Gandhi, Dr. Gregory Robbins
Medical College of Wisconsin, Inc. CRS (n=32)	Dr. Michael O. Frank
Medical University of South Carolina: Division of Infectious Diseases CRS (n=4)	Dr. Allison Ross Eckard
Michael E. DeBakey VAMC REPRIEVE CRS (n=19)	Dr. Maria C. Rodriguez-Barradas
Mills Clinical Research (n=1)	Dr. Ron Knight
Mount Sinai Beth Israel CRS (n=37)	Dr. Judith A. Aberg
Mount Sinai Downtown CRS (n=40)	Dr. Judith A. Aberg
Mount Sinai St. Luke's Morningside CRS (n=36)	Dr. Alexandra Jones Abrams-Downey
Mount Sinai St. Luke's West 17th St (n=19)	Dr. Antonio Urbina
Mount Sinai West Samuels CRS (n=42)	Dr. Luz Amarilis Lugo
New Jersey Medical School Clinical Research Center CRS (n=47)	Dr. Shobha Swaminathan
Northwestern University CRS (n=66)	Dr. Babafemi Taiwo
Ohio State University CRS (n=54)	Dr. Susan L. Koletar

Oklahoma State University Center for Health Sciences CRS (n=9)	Dr. Damon Baker
Orlando Immunology Center CRS (n=63)	Dr. Edwin DeJesus
Palmetto Health Clinical Trial Department CRS (n=25)	Dr. Helmut Albrecht
Penn Therapeutics CRS (n=104)	Dr. Pablo Tebas
Positive Health Clinic CRS (n=24)	Dr. Chiu-Bin Hsiao
Puerto Rico AIDS Clinical Trials Unit CRS (n=36)	Dr. Jorge L. Santana-Bagur
Rush University CRS (n=25)	Dr. Beverly E. Sha
Specialty Care Center CRS (n=51)	Dr. Sara Hurtado Bares
Stanford AIDS Clinical Trials Unit CRS (n=12)	Dr. Philip Grant
St. John Newland Medical Associates (n=11)	Dr. Rodger D. MacArthur
The Miriam Hospital (TMH) CRS (n=39)	Dr. Karen T. Tashima
The Ponce de Leon Center CRS (n=57)	Dr. Carlos del Rio
Trinity Health and Wellness Center CRS (n=46)	Dr. Roger Bedimo
Tufts Medical Center CRS (n=21)	Dr. Alysse G. Wurcel
Tulane - Louisiana Community AIDS Research Program (T- LaCARP) CRS (n=19)	Dr. David M. Mushatt
UCLA CARE Center CRS (n=56)	Dr. Kara W. Chew
UCSD Antiviral Research Center CRS (n=81)	Dr. Susan J. Little
UCSF HIV/AIDS CRS (n=49)	Dr. Annie Luetkemeyer
UIC Project WISH CRS (n=73)	Dr. Richard M. Novak
University of Arizona CRS (n=11)	Dr. Elizabeth Connick
University of Colorado Hospital CRS (n=80)	Dr. Thomas B. Campbell
University of Miami AIDS Clinical Research UNIT (ACRU) CRS (n=31)	Dr. Margaret Fischl
University of Miami Infectious Disease Research Unit at Jackson Memorial Hospital CRS (n=19)	Dr. Jose Guillermo Castro
University of Mississippi Medical Center CRS (n=24)	Dr. James Brock
University of Pittsburgh CRS (n=51)	Dr. Sharon A. Riddler
University of Rochester Adult HIV Therapeutic Strategies Network CRS (n=57)	Dr. Sonal S. Munsiff
University of Southern California CRS (n=52)	Dr. Michael P. Dube
University of Toledo Medical Center CRS (n=13)	Dr. Joan M. Duggan
University of Washington Positive Research CRS (n=34)	Dr. Rachel Bender Ignacio
UT Southwestern HIV/ID Clinical Trials Unit CRS (n=183)	Dr. Mamta Khandelwal Jain
VA Connecticut Healthcare (n=3)	Dr. Michael Kozal
VA NY Harbor Healthcare NY (n=1)	Dr. Michael Simberkoff
VA West Los Angeles Medical Center CRS (n=19)	Dr. Matthew Bidwell Goetz
Vanderbilt Therapeutics (VT) CRS (n=42)	Dr. David W. Haas
Virginia Commonwealth University CRS (n=18)	Dr. Daniel E. Nixon
Wake Forest Baptist Medical Center CRS (n=53)	Dr. Aimee Wilkin
Washington University Therapeutics (WT) CRS (n=63)	Dr. Rachel M. Presti
Weill Cornell Chelsea CRS (n=67)	Dr. Kristen Marks
Weill Cornell Uptown CRS (n=56)	Dr. Marshall Jay Glesby

Whitman-Walker Institute, Inc. CRS (n=87)	Dr. Sarah Henn	
Yale University CRS (n=11)	Dr. Jessica Tuan	
Zimbabwe (n=125)		
Milton Park CRS (n=125)	Dr. Wadzanai P. Samaneka	

Section 1: Governance

REPRIEVE Trial Leadership and Stakeholders

The study investigators thank the study participants, site staff, and study-associated personnel for their ongoing participation in the trial. In addition, we thank the following: the AIDS Clinical Trial Group (ACTG) for clinical site support; ACTG Clinical Trials Specialists for regulatory support; the data management center, Frontier Science Foundation, for data support; the Center for Biostatistics in AIDS Research for statistical support; and the Community Advisory Board for input for the community and NHLBI and NIAID team members for help with the trial.

In addition to the writing group, the following committee members contributed to the conduct of the REPRIEVE trial:

<u>AIDS Clinical Trials Network (ACTG)</u>: B. Bastow, J. Dragavon, E. Hoffman. F. Giguel, L. Moran (ACTG Network Coordinating Center, DLH Corporation), J. Roa. (ACTG Network Coordinating Center, DLH Corporation), N. Saleh (ACTG Network Coordinating Center, DLH Corporation), A. Shahkolahi.

Biomedical Research Institute (biorepository): J. Ward.

Canadian Trials Network: E. Cherban, D. Nohynek, J. Falutz.

<u>Center for Biostatistics and AIDS Research at Harvard T.H. Chan School of Public Health:</u> S. Brummel, J. Granche, A. Kantor, J. Leon-Cruz, C. Moser, P. Pascuski, H.J. Ribaudo, L. Smeaton, T. Umbleja.

<u>Clinical Coordinating Center:</u> C. Benjamin, G. Bloomfield, T. Cadet, M. Diggs, P. Douglas, E. Fulda, S. Grinspoon, E. Grzejka, S. Looby, S. McCallum, J. Murphy, M. Zanni.

Community Advisory Board: A. Diggs, R. Ettinger, A. Hernandez, J. Jarrells, S. Selvage.

Community Scientific Subcommittee Representatives: K. Shaw, K. Starr.

Data Coordinating Center: R. Barve, B. Foldyna, S. Hedgire, U. Hoffmann, J. Karády, N. Klop-Packel, Y. Liao, M. Lu, T. Mayrhofer, N. Meyersohn, E. Norton, K. Paradis, A. Sturniolo, J. Taron.

Data Management Center (Frontier Science Foundation): F. Bone, M. Byroads, M. Green, H. Gutzman, A. Holguin, R. LeBlanc, J. Nowak, G. Pavlov, S. Siminski, H. Sprenger, D. Vlieg, K. Wood.

External Advisory Board: S. Hammer (late member), M. Hirsch, J. Manson, P. Ridker, J. Stein, R. Tracy, J. Udelson.

<u>The European treatment network for HIV, hepatitis and global infectious diseases (NEATid)</u>: E. Martinez, T. Leaver, A. Pozniak.

Gilead Sciences, Inc.: K Melbourne, J. Rooney

Independent Data and Safety Monitoring Board: M. Budoff, B. Cheng, S. Goldkind, C. Grunfeld, R. Harrington (Chair), D. Lloyd-Jones, J. Robinson, L. Sleeper, G. Sopko (Executive Secretary), P. Volberding.

Kowa Pharmaceuticals America, Inc.: C. Sponseller

National Institutes of Health/National Heart Lung and Blood Institute: P. Bandettini, P. Desvigne-Nickens, F. Ketema, G. Sopko, Y. Rosenberg, J. Troendle.

National Institutes of Health/National Institute of Allergy and Infectious Diseases: B. Alston, K. Klingman, P. Kim, O. Alli, K. Johnson, K. Reese, M. Mishkin, B. Castillo, B. Adedeji, D. Livnat, A. Ojumu

<u>Research Organisation (kc) ltd. (CRO for EU5332):</u> O. Anthony, S. Bannoo, A. Duffy, C. Fletcher, M. Sanchez Grande, A. Sierto, E. Walker.

REPRIEVE Committee Membership

Executive Committee		
Member Name	Institution	
B. Alston-Smith	National Institute of Allergy and Infectious Diseases of the National Institutes of Health	
P. Bandettini	National Heart, Lung, and Blood Institute of the National Institutes of Health	
G. Bloomfield	Duke University	
J. Currier	University of California Los Angeles David Geffen School of Medicine	
P. Desvigne-Nickens	National Heart, Lung, and Blood Institute of the National Institutes of Health	
M. Diggs	Massachusetts General Hospital	
P. Douglas	Duke University	
K. Fitch	Massachusetts General Hospital	
S. Grinspoon (Chair)	Massachusetts General Hospital	
P. Kim	Division of AIDS of the National Institutes of Health	
M. Lu	Massachusetts General Hospital	
K. Paradis	Massachusetts General Hospital	
H. Ribaudo	Harvard T.H. Chan School of Public Health	
Y. Rosenberg	National Heart, Lung, and Blood Institute of the National Institutes of Health	
J. Troendle	National Heart, Lung, and Blood Institute of the National Institutes of Health	
	Events Oversight Committee	
G. Bloomfield	Duke University	
M. Byroads	Frontier Science Foundation	
P. Douglas (Chair)	Duke University	
K. Fitch	Massachusetts General Hospital	
E. Gershman	Brigham and Women's Hospital	
S. Grinspoon	Massachusetts General Hospital	
F. Lawal	Division of AIDS of the National Institutes of Health	
J. Leon-Cruz	Harvard T.H. Chan School of Public Health	
R. Louis	Massachusetts General Hospital	
C. Lowe	Brigham and Women's Hospital	
M. Lu	Massachusetts General Hospital	
E. Moy	Brigham and Women's Hospital	
K. Paradis	Massachusetts General Hospital	
H. Ribaudo	Harvard T.H. Chan School of Public Health	
T. Umbleja	Harvard T.H. Chan School of Public Health	
N. Upadhyay	Massachusetts General Hospital	
S. Wiviott	Brigham and Women's Hospital	
K. Wood	Frontier Science Foundation	

EU Committee		
O. Anthony	ROKC	
R. Barve	Massachusetts General Hospital	
F. Bone	Frontier Science Foundation	
S. Bannoo	ROKC	
M. Diggs	Massachusetts General Hospital	
A. Duffy	ROKC	
K. Fitch (Chair)	Massachusetts General Hospital	
C. Fletcher	ROKC	
M. Green	Frontier Science Foundation	
N. Klop-Packel	Massachusetts General Hospital	
S. McCallum	Massachusetts General Hospital	
E. Norton	Massachusetts General Hospital	
J. Nowak	Frontier Science Foundation	
K. Paradis	Massachusetts General Hospital	
H. Ribaudo	Harvard T.H. Chan School of Public Health	
M. Sanchez Grande	ROKC	
A. Sierto	ROKC	
S. Siminski	Frontier Science Foundation	
T. Umbleja	Harvard T.H. Chan School of Public Health	
E. Walker	ROKC	
K. Wood	Frontier Science Foundation	
D. Vlieg	Frontier Science Foundation	
	Lab Committee	
F. Bone	Frontier Science Foundation	
T. Burdo	Temple University	
M. Diggs	Massachusetts General Hospital	
K. Fitch (Chair)	Massachusetts General Hospital	
M. Green	Frontier Science Foundation	
S. McCallum	Massachusetts General Hospital	
L. Moran	AIDS Clinical Trials Group	
K. Paradis	Massachusetts General Hospital	
J. Roa	DLH Corporation	
H. Sprenger	Frontier Science Foundation	
D. Vlieg	Frontier Science Foundation	
Operational Leadership Committee		
J. Aberg	Icahn School of Medicine at Mount Sinai	
B. Adedeji	Division of AIDS of the National Institutes of Health	
O. Alli	Division of AIDS of the National Institutes of Health	
P. Bandettini	National Heart, Lung, and Blood Institute of the National Institutes of Health	
G. Bloomfield	Duke University	

T. Burdo	Temple University
M. Byroads	Frontier Science Foundation
B. Castillo	Division of AIDS of the National Institutes of Health
J. Currier	University of California Los Angeles David Geffen School of Medicine
P. Desvigne-Nickens	National Heart, Lung, and Blood Institute of the National Institutes of Health
M. Diggs	Massachusetts General Hospital
P. Douglas	Duke University
J. Dragavon	University of Washington
K. Easley	Division of AIDS of the National Institutes of Health
J. Falutz	Canadian HIV Trials Network
C. Fichtenbaum	University of Cincinnati College of Medicine
K. Fitch	Massachusetts General Hospital
S. Grinspoon (Chair)	Massachusetts General Hospital
E. Grzejka	Massachusetts General Hospital
E. Hoffman	University of North Carolina Chapel Hill
P. Kim	Division of AIDS of the National Institutes of Health
F. Lawal	Division of AIDS of the National Institutes of Health
Y. Liao	Massachusetts General Hospital
S. Looby	Massachusetts General Hospital
M. Lu	Massachusetts General Hospital
L. Moran	AIDS Clinical Trials Group
D. Nohynek	Canadian HIV Trials Network
K. Paradis	Massachusetts General Hospital
M. Pate	Kowa Pharmaceuticals America, Inc.
H. Ribaudo	Harvard T.H. Chan School of Public Health
J. Rooney	Gilead Sciences, Inc.
A. Shahkolahi	AIDS Clinical Trials Group
S. Siminski	Frontier Science Foundation
C. Sponseller	Kowa Pharmaceuticals America, Inc.
H. Sprenger	Frontier Science Foundation
K. Williams	Frontier Science Foundation
K. Wood	Frontier Science Foundation
M. Zanni	Massachusetts General Hospital
Protocol Writing, Training, and Implementation Committee	
J. Aberg	Icahn School of Medicine at Mount Sinai
O. Alli	Division of AIDS of the National Institutes of Health
P. Bandettini	National Heart, Lung, and Blood Institute of the National Institutes of Health
G. Bloomfield	Duke University
K. Borloglou	AIDS Clinical Trials Group
M. Byroads	Frontier Science Foundation

M. Clement	Duke University
P. Desvigne-Nickens	National Heart, Lung, and Blood Institute of the National Institutes of Health
M. Diggs	Massachusetts General Hospital
P. Douglas	Duke University
J. Dragavon	University of Washington
K. Easley	Division of AIDS of the National Institutes of Health
A. Eckard	Medical University of South Carolina
C. Fichtenbaum	University of Cincinnati College of Medicine
K. Fitch	Massachusetts General Hospital
S. Grinspoon	Massachusetts General Hospital
E. Hoffman	University of North Carolina Chapel Hill
F. Lawal	Division of AIDS of the National Institutes of Health
R. LeBlanc	Frontier Science Foundation
J. Leon-Cruz	Harvard T.H. Chan School of Public Health
M. Lu	Massachusetts General Hospital
C. Malvestutto (Chair)	Ohio State University Medical Center
L. Moran	AIDS Clinical Trials Group
E. Overton (former Chair)	University of Alabama at Birmingham
H. Ribaudo	Harvard T.H. Chan School of Public Health
A. Shahkolahi	AIDS Clinical Trials Group
K. Shaw	ACTG Community Scientific Subcommittee
V. Triant	Massachusetts General Hospital
K. Wood	Frontier Science Foundation
M. Zanni (Chair)	Massachusetts General Hospital
	Publications Committee
J. Aberg	Icahn School of Medicine at Mount Sinai
B. Alston-Smith	National Institute of Allergy and Infectious Diseases of the National Institutes of Health
P. Bandettini	National Heart, Lung, and Blood Institute of the National Institutes of Health
G. Bloomfield	Duke University
J. Currier	University of California Los Angeles David Geffen School of Medicine
P. Desvigne-Nickens	National Heart, Lung, and Blood Institute of the National Institutes of Health
M. Diggs	Massachusetts General Hospital
A. Diggs	REPRIEVE Community Advisory Board
P. Douglas	Duke University
C. Fichtenbaum	University of Cincinnati College of Medicine
K. Fitch	Massachusetts General Hospital
S. Grinspoon (Chair)	Massachusetts General Hospital
A. Kantor	Harvard T.H. Chan School of Public Health
F. Lawal	Division of AIDS of the National Institutes of Health

J. Leon-Cruz	Harvard T.H. Chan School of Public Health	
S. Looby	Massachusetts General Hospital	
M. Lu	Massachusetts General Hospital	
C. Malvestutto	Ohio State University Medical Center	
J. Manne-Goehler	Brigham and Women's Hospital	
S. McCallum	Massachusetts General Hospital	
L. Moran	AIDS Clinical Trials Group	
K. Paradis	Massachusetts General Hospital	
H. Ribaudo	Harvard T.H. Chan School of Public Health	
J. Rooney	Gilead Sciences, Inc.	
C. Sponseller	Kowa Pharmaceuticals America, Inc.	
K. Starr	ACTG Community Scientific Subcommittee	
T. Umbleja	Harvard T.H. Chan School of Public Health	
M. Waclawiw	National Heart, Lung, and Blood Institute of the National Institutes of Health	
M. Zanni (Chair)	Massachusetts General Hospital	
Site Selection, Performance, and Close Out Committee		
J. Aberg	Icahn School of Medicine at Mount Sinai	
B. Adedeji	Division of AIDS of the National Institutes of Health	
O. Alli	Division of AIDS of the National Institutes of Health	
P. Bandettini	National Heart, Lung, and Blood Institute of the National Institutes of Health	
R. Barnett	Division of AIDS of the National Institutes of Health	
J. Baum	Case Western Reserve	
M. Byroads	Frontier Science Foundation	
B. Castillo	Division of AIDS of the National Institutes of Health	
C. Coates	Division of AIDS of the National Institutes of Health	
S. Cordoso	Instituto de Pesquisa Clinica Evandro Chagas	
C. Costanza	New Jersey Medical School	
S. Davila	Puerto Rico AIDS Clinical Trials Unit	
P. Desvigne-Nickens	National Heart, Lung, and Blood Institute of the National Institutes of Health	
M. Diggs	Massachusetts General Hospital	
J. Dushyantha	Jackson Memorial Hospital	
K. Easley	Division of AIDS of the National Institutes of Health	
C. Fichtenbaum (Chair)	University of Cincinnati College of Medicine	
K. Fitch	Massachusetts General Hospital	
T. Greenfield	National Institute of Allergy and Infectious Diseases of the National Institutes of Health	
H. Gutzman	Frontier Science Foundation	
R. Harden	University of Illinois at Chicago Project Wish	
S. Henn	Whitman-Walker Institute, Inc.	
M. Humphries	Division of AIDS of the National Institutes of Health	

M. Jain	University of Texas Southwestern
D. Klein	Whitman-Walker Institute, Inc.
S. Kohrs	University of Cincinnati College of Medicine
S. Koletar	Ohio State University Medical Center
J. Lama	Barranco Clinical Research Site
J. Landis	Division of AIDS of the National Institutes of Health
J. Leone	University of North Carolina Chapel Hill
R. Lira	Hospital Nossa Senhora da Conceicao
M. Lu	Massachusetts General Hospital
C. Malvestutto	Ohio State University Medical Center
M. Martinez	University of Texas Houston
R. Novak	University of Illinois at Chicago Project Wish
K. Reese	Division of AIDS of the National Institutes of Health
G. Robbins	Massachusetts General Hospital
B. Santos	Hospital Nossa Senhora da Conceicao
A. Shahkolahi	AIDS Clinical Trials Group
H. Sprenger	Frontier Science Foundation
J. Tucker	Division of AIDS of the National Institutes of Health
A. Wilkin	Wake Forest University
T. Wilson	University of Alabama at Birmingham
K. Wood	Frontier Science Foundation
M. Zanni	Massachusetts General Hospital

Contributions to Design, Conduct and Reporting of REPRIEVE

REPRIEVE (A5332) was funded the National Heart Lung and Blood Institute (NHLBI) of the NIH through a cooperative UO1 grants for the Clinical (CCC) and Data (DCC) Coordinating Centers with additional support from the National Institutes of Allergy and Infectious Diseases (NIAID) and supplemental funding from the Office of AIDS Research. Kowa Pharmaceuticals America, Inc. Gilead Sciences and ViiV Healthcare also supported the study. NIAID was the regulatory sponsor and IND holder.

REPRIEVE (A5332) was designed by the Co-PIs (Drs. Grinspoon and Douglas, Co-Chairs of the CCC and Drs. Hoffmann and Ribaudo, Co-Chairs of the DCC) with guidance and approval from the NHLBI and NIAID. Dr. Lu replaced Dr. Hoffmann as Co-PI and Co-Chair of the DCC in 2021. The overall leadership of the trial was provided by the Executive Committee, Chaired by Dr. Grinspoon, with members including the other Co-PIs and representatives of the NIH. Guidance regarding protocol development and implementation was provided from the Protocol Committee and site performance evaluation overseen by the Site Selection, Performance and Close Out Committee (SSPCC).

REPRIEVE (EU5332) was a scientifically identical protocol launched in 2019 to expand enrollment to sites in the European Union. EU5332 was co-sponsored by European Treatment Network for HIV, Hepatitis, and Global Infectious Diseases (NEATid) and Massachusetts General Hospital with industry support. Study conduct, site monitoring, and data collection was overseen by Research Organisation (KC) Ltd (ROKC) and was separate for the two study protocols, pooling of their data was planned for interim monitoring and final analysis.

A DSMB appointed by NHLBI met regularly, every 6 months to review safety and efficacy data and advised the NIH on the status of the study. DSMB meetings and calls were organized into Open, Closed, and Executive Sessions. The <u>open session</u> dealt with issues relating to the general conduct and progress of the study, such as accrual, retention, and safety and all data were presented pooled over treatment group. Following the Open Session and before the Closed Session, a restricted group including only the DSMB, the REPRIEVE NIH team, the REPRIEVE CCC PIs and statisticians reviewed aggregate primary events pooled across treatment groups to discuss trial feasibility and possible sample size adjustments. During the <u>closed session</u>, the DSMB, NHLBI Executive Secretary (ES) and NHLBI statistician, and unblinded REPRIEVE statisticians reviewed data presented by unmasked treatment group. Efficacy data by treatment group were not reviewed until adequacy of the study sample size assumptions was determined. The DSMB closed the meeting in <u>executive session</u> in which only the DSMB members and NHLBI ES were present. A DSMB Charter is available on request.

Study operations were conducted by the Operational Leadership Committee and various governance committees as described below. Data management was conducted by Frontier Science Foundation, Inc. and site monitoring by the NIH Division of AIDS (DAIDS). The REPRIEVE trial leadership remained blinded until March 31, 2023 following acceptance of the DSMB recommendation by the NIH. The manuscript was written by Dr. Steven Grinspoon with a writing group named as authors on the manuscript. The decision to publish these results was based on recommendations from the REPRIEVE DSMB and the NIH at their meeting on March 30, 2023 as detailed in the methods section of the manuscript.

Blinding Status of the REPRIEVE Biostatistics Team

<u>Blinded:</u> Heather Ribaudo (Lead Statistician, DCC Co-PI), Sara McCallum (Statistical Programmer), Janeway Granche (Statistician)

<u>Unblinded:</u> Triin Umbleja (Coordinating Statistician), Jorge Leon-Cruz (Protocol Statistician), Amy Kantor (Statistician), Sean Brummel (Internal Review), Carlee Moser (Internal Review), Laura Smeaton (Internal Review)

Blinded members of the Biostatistics team had no access to study data linked or aggregated by treatment group assignment. All team members were unblinded on March 31, 2023 following the DSMB recommendation to stop the trial.

Author Name	Author Affiliation	Declarations of Interest
Steven K. Grinspoon	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	Reports grant support through his institution from NIH, Kowa Pharmaceuticals America, Inc., Gilead Sciences, Inc., and ViiV Healthcare for the conduct of the study; personal fees from Theratechnologies and ViiV; and service on the Scientific Advisory Board of Marathon Asset Management, all outside the submitted work.
Kathleen V. Fitch	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	No disclosures to report
Markella V. Zanni	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	Reports grant support through her institution from NIH/NIAID and Gilead Sciences, Inc., relevant to

Author Affiliations

		the conduct of the study, as well as grants from NIH/NIAID and NIH/NHLBI; support for attending CROI and International Workshop for HIV and Women from conference organizing committee when abstract reviewer and/or speaker; and participation in DSMB for NIH funded studies, outside the submitted work.
Carl J. Fichtenbaum	Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, USA	Reports grant support through his institution from Gilead Sciences, ViiV Healthcare, GSK, Janssen, Abbvie, Merck, Amgen, and Cytodyn; personal fees from Theratechnologies and ViiV for consulting and participation on Advisory Board unrelated to REPRIEVE; and DSMB Chair for Intrepid Study, all outside the submitted work.
Triin Umbleja	Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA	Reports grants from NIH/NHLBI and Kowa Pharmaceuticals during the conduct of the study, as well as grants from NIH/NIAID and NIH/NIA outside the submitted work.
Judith A. Aberg	Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA	Reports institutional research support for clinical trials from Emergent Biosolutions, Frontier Technologies, Gilead Sciences, Glaxo Smith Kline, Janssen, Merck, Pfizer, Regeneron, and ViiV Healthcare and personal fees for advisory boards from Glaxo Smith Kline/ViiV and Merck; and participation on DSMB for Kintor Pharmaceuticals, all outside the submitted work.
Edgar T. Overton	Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA	Reports grant support from Gilead Sciences, ViiV Healthcare, and Jannsen, consulting fees from ViiV Healthcare, and employment with ViiV Healthcare Medical Affairs, all outside of the submitted work.
Carlos D. Malvestutto	Division of Infectious Diseases, Ohio State University Medical Center, Columbus, OH, USA	Reports institutional research support by Lilly and honoraria from ViiV Healthcare, Gilead Sciences, and Pfizer for advisory board membership, all outside the submitted work.

Gerald S. Bloomfield	Department of Medicine, Duke Global Health Institute and Duke Clinical Research Institute, Duke University, Durham, NC, USA	No disclosures to report
Judith S. Currier	Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA	Reports consulting fees from Merck and Company and Resvirlogix, outside the submitted work.
Esteban Martinez	Infectious Diseases Service, Hospital Clinic and University of Barcelona, Barcelona, Spain	Reports consulting fees and honoraria for lectures or advisory boards from Gilead Sciences, ViiV Healthcare, Janssen, and MSD, and his institution has received research grants from Gilead, Janssen, MSD, Theratechnologies, and ViiV Healthcare, unrelated to the submitted work.
Jhoanna C. Roa	DLH Corporation, Silver Spring, MD, USA	Reports work supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.
Marissa R. Diggs	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	No disclosures to report
Evelynne S. Fulda	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	No disclosures to report
Kayla Paradis	Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	No disclosures to report
Stephen D. Wiviott	Thrombolysis in Myocardial Infarction (TIMI) Study Group, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA	Reports research grants to Brigham and Women's Hospital from Amgen, AstraZeneca, Janssen, Merck, and Pfizer; consulting fees from Icon Clinical and Novo Nordisk. SDW's spouse is a former employee of Merck and current employee of Flagship Labs. He is a member of the TIMI Study Group, which has also received institutional research grant support through Brigham and Women's Hospital from Abbott, Aralez, Roche, and Zora Biosciences. He reports being a member of an advisory board for Novo Nordisk, Eli Lilly, Sanofi, Merck Sharp & Dohme, Boehringer Ingelheim, Bayer,

		AstraZeneca; research grant support paid to Hadassah Hebrew University Hospital from Novo Nordisk, AstraZeneca; and Speaker's Bureau from AstraZeneca, Novo Nordisk, Eli Lilly, Sanofi, Merck Sharp & Dohme, and Boehringer Ingelheim.
Borek Foldyna	Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	Reports institutional research support from AstraZeneca, MedImmune, and MedTrace, all outside of the submitted work.
Sara E. Looby	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA and Yvonne L. Munn Center for Nursing Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	Reports being a non-paid board member of the community non- profit organization Healing Our Community Collaborative, Boston, Massachusetts and travel support from the Association of Nurses in AIDS Care.
Patrice Desvigne- Nickens	Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA	Reports affiliation with the National Heart, Lung, and Blood Institute of the National Institutes of Health.
Beverly Alston-Smith	Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA	Reports affiliation with the National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Jorge Leon-Cruz	Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA	No disclosures to report
Sara McCallum	Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	No disclosures to report
Udo Hoffmann	Cleerly, Denver, CO, USA	Reports being an employee of Cleerly, Inc. and reports an NIH grant to his institution in support of the present work, as well as consulting fees from Stanford University, Clinical Cardiovascular Sciences, MedTrace Inc., and Rapid AI and holding a leadership role as Chief Scientific Officer and stock/stock options for Cleerly Inc., outside of the submitted work.
Michael T. Lu	Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA	Reports grant support through his institution from the NIH/NHLBI and Kowa Pharmaceuticals America, Inc., for the conduct of the study. He also reports research support to his institution from the American Heart Association, AstraZeneca, Ionis,

		Johnson & Johnson Innovation, MedImmune, the National Academy of Medicine, and the NIH/NHLBI outside of the submitted work.
Heather J. Ribaudo	Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA	Reports grants from Kowa Pharmaceuticals during the conduct of the study, as well as grants from NIH/NIAID, NIH/NHLBI, NIH/NIDDK, and NIH/NIA, outside the submitted work.
Pamela S. Douglas	Duke University Research Institute, Duke University School of Medicine, Durham NC, USA	No disclosures to report

Funding Statement

This study is supported through NIH grants U01HL123336, U01HL123339, UM1 Al068636 and UM1 Al106701 as well as funding from Kowa Pharmaceuticals America, Inc, Gilead Sciences, and ViiV Healthcare.

NIH Grants Policy Statement

The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute or the National Institute of Allergy and Infectious Diseases; the National Institutes of Health; or the U.S. Department of Health and Human Services.

Section 2: Supplemental Methods

Eligibility Criteria

Inclusion Criteria

- Documentation of HIV-1 infection by means of any <u>one</u> of the following:
 - Documentation of HIV diagnosis in the medical record by a licensed health care provider;
 - OR HIV-1 RNA detection by a licensed HIV-1 RNA assay demonstrating >1000 RNA copies/mL;
 - OR any licensed HIV screening antibody and/or HIV antibody/antigen combination assay confirmed by a second licensed HIV assay such as a HIV-1 Western blot confirmation or HIV rapid Multispot antibody differentiation assay.
 NOTE: A "licensed" assay refers to a US FDA-approved assay, which is required for all IND studies. Non-US sites are encouraged to use FDA-approved methods; if not available, then each non-US site must use an assay that has been certified or licensed by an oversight body within that country and validated internally.

WHO (World Health Organization) and CDC (Centers for Disease Control and Prevention) guidelines mandate that confirmation of the initial test result must use a test that is different from the one used for the initial assessment.

- Combination antiretroviral therapy (ART) for at least 180 days prior to study entry. NOTE: Treatment interruptions for up to 30 days total in the last 180 days are permitted as long as the participant has been continuously on therapy for the 30 days prior to study entry.
- CD4+ cell count >100 cells/mm³ obtained within 180 days prior to study entry at any US laboratory that has a Clinical Laboratory Improvement Amendments (CLIA) certification or its equivalent, or at any network-approved non-US laboratory that operates in accordance with Good Clinical Laboratory Practices and participates in appropriate external quality assurance programs.
- Laboratory values drawn at screen and/or obtained from clinical care (as indicated in <u>section 6.1</u> Schedule of Evaluations of the Protocol) within 90 days prior to study entry at any US laboratory that has a Clinical Laboratory Improvement Amendments (CLIA) certification or its equivalent, or at any network-approved non-US laboratory that operates in accordance with Good Clinical Laboratory Practices and participates in appropriate external quality assurance programs.
 - Fasting LDL cholesterol as follows:
 - If ASCVD risk score <7.5%, LDL cholesterol must be <190 mg/dL
 - If ASCVD risk score ≥7.5% and ≤10%, LDL must be <160 mg/dL
 If ASCVD risk score >10% and ≤15%, LDL must be <130 mg/dL
 NOTE: If LDL <70 mg/dL, participant is eligible regardless of 10-year ASCVD risk score in line with the ACC/AHA 2013 Prevention Guidelines.
- Fasting triglycerides <500 mg/dL
- Hemoglobin >8 g/dL for female participants and >9 g/dL for male participants.
- Glomerular filtration rate (GFR) ≥60 mL/min/1.73m² or creatinine clearance (CrCl) ≥60 mL/min

NOTE: See the A5332 Manual of Procedures (MOPS) for links to GFR and CrCl calculators.

• ALT ≤2.5 x ULN

NOTE: Participants co-infected with chronic active hepatitis B or C must have ALT $\leq 2 \times ULN$.

• For persons with known chronic active hepatitis B or C, calculated FIB-4 score must be ≤3.25.

NOTE: Active is defined as hepatitis B surface antigen positive, hepatitis B DNA positive, or hepatitis C RNA positive.

NOTE: Refer to the calculator for the FIB-4 equation in the MOPS.

• Female participants of reproductive potential (defined as women who have not been post-menopausal for at least 24 consecutive months, i.e, who have had menses within 24 months prior to study entry, and women who have not undergone surgical sterilization, specifically hysterectomy or bilateral oophorectomy) must have a negative serum or urine pregnancy test within 48 hours prior to entry by any US laboratory or clinic that has a CLIA certification or its equivalent, or is using a point-of-care (POC)/CLIA-waived test, or at any network-approved non-US laboratory or clinic that operates in accordance with Good Clinical Laboratory Practices and participates in appropriate external quality assurance programs.

NOTE: Participant-reported history is considered acceptable documentation of hysterectomy, bilateral oophorectomy, and menopause. Women are considered menopausal if they have not had a menses for at least 12 months and have a FSH (follicle stimulating hormone) of greater than 40 IU/L or, if FSH testing is not available, they have had amenorrhea for 24 consecutive months.

 For women of reproductive potential, willingness to use contraceptives as described in the product information for pitavastatin. Contraceptives must be used at least two weeks before initiation of study drug and must be continued 6 weeks after cessation of study drug.

If participating in sexual activity that could lead to pregnancy, women must use a form of contraceptive. At least one of the following methods must be used appropriately:

- Condoms (male or female) with or without spermicidal agent
- Diaphragm or cervical cap with spermicidal agent
- Intrauterine device (IUD)
- Hormone-based contraceptive
- Tubal ligation
- Tubal micro-inserts

Women who are not of reproductive potential as defined above are eligible without the use of contraception.

- Men and women age ≥40 and ≤75 years of age.
- Ability and willingness of participant or legal representative to provide written informed consent.

Exclusion Criteria

- Clinical ASCVD, as defined by 2013 ACC/AHA guidelines, including a previous diagnosis of any of the following:
 - o AMI
 - Acute coronary syndromes
 - Stable or unstable angina

- Coronary or other arterial revascularization
- o Stroke
- o TIA
- o Peripheral arterial disease presumed to be of atherosclerotic origin
- Current diabetes mellitus if LDL ≥70 mg/dL
 - NOTE: Current diabetes is defined by patient report of physician diagnosis. Participants with a history of diabetes that has resolved and no longer requires therapy are not considered to have current diabetes, eg, women with a history of gestational diabetes, steroid-induced or medication-induced.
- 10-year ASCVD risk score estimated by Pooled Cohort Equations >15% NOTES:
 - If LDL <70 mg/dL, participant is eligible regardless of risk score in line with the ACC/AHA 2013 Prevention Guidelines.
 - See Fasting LDL Inclusion Criteria for LDL requirements by risk score.
 - Cardiovascular Risk Assessment Tool, for detailed instructions concerning access and use of the 10-year ASCVD risk score calculator (see Section 6.3.4 of Protocol).
- Active cancer within 12 months prior to study entry. NOTE: Exceptions:
 - o Successfully treated non-melanomatous skin cancer
 - Kaposi sarcoma without visceral organ involvement
- Known decompensated cirrhosis.
- History of myositis or myopathy with active disease in the 180 days prior to study entry.
- Known untreated symptomatic thyroid disease.
- History of allergy or severe adverse reaction to statins.
- Use of specific immunosuppressants or immunomodulatory agents, including but not limited to tacrolimus, sirolimus, rapamycin, mycophenolate, cyclosporine, TNF-alpha blockers or antagonists, azathioprine, interferon, growth factors, or intravenous immunoglobulin (IVIG), in the 30 days prior to study entry. NOTE: Use of oral prednisone ≤10 mg/day or equivalent dosage is allowed.

NOTE. Ose of oral predhisone sto mg/day of equivalent dosage is allowed.

NOTE: Refer to the MOPS for clarification regarding medications in these categories.

- Current use of erythromycin, colchicine, or rifampin.
- Use of any statin drugs, gemfibrozil, or PCSK9 inhibitors in the 90 days prior to study entry.
- Current use of an investigational new drug that would be contraindicated.
 NOTE: Please contact the protocol core team via e-mail as described in the <u>Study</u>
 <u>Management section of Protocol</u> for guidance on coenrollment of participants on
 investigational new drugs.
- Serious illness or trauma requiring systemic treatment or hospitalization in the 30 days prior to study entry.

- Known active or recent (not fully resolved within 30 days prior to study entry) systemic bacterial, fungal, parasitic, or viral infections (except HIV, HBV, human papillomavirus [HPV], or HCV).
- Current breastfeeding.

Alcohol or drug use that, in the opinion of the site investigator, would interfere with completion of study procedures,

• Other medical, psychiatric, or psychological condition that, in the opinion of the site investigator, would interfere with completion of study procedures and or adherence to study drug.

Diet, Activity, and Smoking Cessation Guidance

Information on diet, activity, smoking cessation, adhering to antiretroviral therapy, and adhering to the study medications was given to participants at each annual visit. The guidance on lifestyle was based on the NHLBI's Management of Blood Cholesterol in Adults¹ and was based on the and Included Information on the topics listed below.

- Goals of Therapeutic Lifestyle Changes (TLC)
- Physical Activity
- TLC Diet: Daily Food Guide Food Groups
 - Fruits and Vegetables
 - Meat, Poultry, Fish, Dry Beans, Eggs, and Nuts
 - Fats and Oils
 - o Breads, Cereals, Rice, Pasta, and Other Grains
 - Sweets and Snacks
- Recommendations on Quitting Smoking
- Recommendations on adhering to the HIV medications prescribed by your doctor
- Recommendations on adhering to the study medication (pitavastatin or placebo) for pitavastatin

Primary and Secondary Outcome Measures

Primary and Secondary outcome measures according to Version 6.0 of the protocol are listed below. Outcome measures reported in the present manuscript include those related to major adverse cardiovascular events (MACE) and safety outcomes relevant to the DSMB recommendations to close the study. Analyses of other serious clinical diagnoses, including cancer, AIDS-defining events and COVID-19 (secondary outcome measures 4, 7-9) will be performed once REPRIEVE follow-up is complete and the database is final. Likewise, descriptive summaries of lipid outcomes are presented; full analysis will be based on the full study database upon completion of the study and assays.

Primary Outcome Measure

- 1. Time to the first event of a composite of major cardiovascular events (MACE) including:
 - Atherosclerotic or other cardiovascular disease death
 - Nonfatal myocardial infarction
 - Unstable angina hospitalization
 - Coronary, carotid, or peripheral arterial revascularization
 - Nonfatal stroke or transient ischemic attack
 - Peripheral arterial ischemia (acute or chronic limb ischemia, amputation, etc.)

All primary events will be prospectively determined and adjudicated by an expert Clinical Events Committee (CEC) based on standardized criteria used in prior cardiovascular trials and developed by consensus groups and the FDA.²

All deaths classified as undetermined by CEC will be considered primary MACE events for this outcome measure, as specified in the Clinical Event Committee Charter.

Secondary Outcome Measures

- 1. Time to the first of each individual component of the primary outcome measure (described above)
- 2. Time to death (all-cause mortality)
- 3. Time to death (all-cause mortality) and/or MACE
- 4. Time to any (composite) or each (individual) of the following incident clinical diagnoses (including recurrent diagnoses as appropriate)
 - Non AIDS-defining cancers (excluding basal cell and squamous cell carcinomas of the skin)
 - AIDS-defining events (based on CDC 2014 classification)
 - End-stage renal disease, defined as initiation of dialysis or renal transplantation.
 - End-stage liver disease, defined as cirrhosis, or hepatic decompensation requiring hospitalization
- Calculated fasting LDL cholesterol (LDL-C) and non-HDL cholesterol at study entry and annually thereafter, as well as change from baseline expressed as absolute change and as a percentage of baseline.
- 6. Time to any of the following adverse events (including recurrent events as appropriate)
 - Serious adverse event as defined by ICH criteria
 - Incident Diabetes mellitus
 - Grade 3 or 4 alanine transaminase
 - Grade 3 or 4 myopathy

All events will be included regardless of relationship to treatment as determined by sites. Grading is defined per the DAIDS Table for Grading the Severity of Adult and Pediatric Adverse Events, corrected Version 2.1, July 2017.

7. Time to COVID-19 diagnosis

- 8. Time to serious COVID-19 (i.e., a COVID-19 diagnosis that is life threatening or results in hospitalization or death)
- 9. Antibody-positive COVID-19 infection assessed cross-sectionally at specific calendar time points from samples collected annually

Interim Monitoring Plan and Monitoring Benchmarks

Interim review of REPRIEVE by an NHLBI-appointed DSMB was governed by the REPRIEVE DSMB Charter. The DSMB meetings were held every 6 to 12 months, as necessary, to review the conduct, safety, and ongoing feasibility of the study.

For reference, the following table summarizes the benchmarks for REPRIEVE monitoring agreed upon by the study team and NHLBI.

Туре	Threshold for concern
Enrollment	Accrual rate <75% of the target.
Premature study discontinuation	Annualized pooled rate of premature study discontinuation >5%.
Treatment Crossover	Rate of crossover in any treatment group >15%.
MACE Rate	Average pooled event rate ≤10/1000 PY based on predicted intervals under a range of realistic scenarios.
Efficacy & Futility	Lan & DeMets implementation of the O'Brien-Fleming group sequential boundary with information measured on the cumulative number of Primary MACE endpoints.

REPRIEVE is an event-driven trial designed to detect a hazard ratio of 0.70, a 30% reduction in First Primary MACE endpoints (defined above) with pitavastatin compared to placebo, in a two-sided test with significance level of 5% and 85% power. The final planned number of participants with a First Primary MACE endpoint (i.e., total information) is 288.

As described in the Statistical Analysis Plan and DSMB Charter, the first evaluation of the pooled MACE endpoint rate was scheduled to occur approximately 2 years after the enrollment of the first participant (in June 2017). Since then, event rate summaries were provided for each DSMB review.

The REPRIEVE Statistical Analysis Plan called for DSMB monitoring for efficacy and futility based on the Lan & DeMets implementation of the O'Brien-Fleming group sequential boundary scheduled based on information measured on the cumulative number of First Primary MACE endpoints. Four interim looks were planned originally: at 20% (if requested by DSMB), 40%, 60%, and 80% information. Per recommendation of NHLBI, endorsed by the DSMB at the December 2019 meeting, the timing of interim looks was changed to at 50% and 75% information to allow for the optimal decision making about extending study follow-up duration.

The first interim efficacy analysis occurred on September 21, 2021 at 55% information (n=159 endpoints). The second review occurred on March 30, 2023 at 78% information (n=225 endpoints) and resulted in a DSMB recommendation that the trial be stopped for efficacy. The efficacy boundary p-value for this analysis was 0.02084, and a Z-value of 2.31.

Statistical Methods

All statistical analyses were performed in accordance with the REPRIEVE Statistical Analysis Plan (Version 2.0). Details are summarized below with additional data and considerations for the results presented.

Data and Statistical Considerations

We report on the database used for reporting for the DSMB review on March 30, 2023 on which the decision to stop the trial was made. These data were retrieved from the A5332 and EU5332 databases on February 27, 2023 and reflect data in the electronic data capture system as of February 25, 2023. To prepare for that DSMB review, sites were asked to provide complete data and submit any event adjudication packets for all visits up to and including December 30, 2022. Thorough QA/QC for these visits was completed, as much as possible.

Data from REPRIEVE (A5332) and REPRIEVE (EU5332) are pooled for all summaries. Percentages are calculated out of participants with data. Continuous outcomes are summarized using descriptive statistics including median and first and third quartiles.

Outcome Measures

Efficacy

The primary estimand was the cause-specific relative hazard of prescribed pitavastatin versus placebo with statin initiation if clinically indicated. The primary outcome measure for efficacy was time to first primary major adverse cardiovascular event (MACE) (See Primary and Secondary Outcome Measures). Per NEJM request, a supportive analysis of first primary MACE including endpoints and follow-up time captured from vital status and endpoint follow-up was added.

Secondary outcome and supportive outcome measures include:

- Time to confirmed MACE (Primary MACE, excluding deaths of undetermined cause)
- Time to First Primary MACE on treatment (as-treated)
- Time to first MACE or death (all-cause).
 - An additional supportive analysis includes data from vital status and endpoint follow-up.
- Time to death (all-cause)
- Time to the first of each individual component of the primary outcome measure.
 - Events that resulted in death are included (e.g. first cardiac ischemia or MI includes MIs that resulted in death).

Unless otherwise noted, only MACE outcomes that had completed the adjudication process at the time of data retrieval were included and efficacy analyses were administratively censored at December 30, 2022. Specifically, all MACE outcomes after December 30, 2022 were excluded and all participant follow-up beyond December 30, 2022 was censored. This was done to avoid underestimation of the event incidence rate by inclusion of accumulated person-years beyond the time in which a potential MACE outcome could have completed the adjudication process. Since determination of CV vs. non-CV death was unnecessary to identify endpoints, analyses including all-cause death include all on-study deaths and follow-up time out to last contact without censoring.

Adverse Events

Adverse events presented are those with onset date after randomization that met the protocol reporting requirements. Events with a start date on the date of randomization were assumed to have occurred after randomization and were included. Targeted clinical events for pitavastatin efficacy evaluation (i.e., Primary MACE, deaths, COVID-19, and heart failure) were not included in AE summaries, regardless of severity or seriousness. Similarly, potential MACE and heart failure endpoints (i.e., adjudicated events or

"triggers") adjudicated as duplicate are excluded - these occurred subsequent to a positively adjudicated event. Non-fatal MACE triggers reviewed and determined as not MACE or heart failure (i.e., downgraded events) were included if they met REPRIEVE AE reporting criteria (see protocol). MACE triggers pending adjudication were excluded throughout. Of note, since deaths were not included as AEs, all SAEs are non-fatal. All deaths were summarized separately as part of efficacy analyses.

All adverse events reported at the time of data retrieval were included.

Targeted adverse events included incident diabetes mellitus, myalgia, muscle weakness, or myopathy that was treatment-limiting or Grade 3 or higher, rhabdomyolysis, ALT elevation of grade 3 or higher.

Diabetes events were identified based on MedDRA terminology search strings. Diabetes includes a preferred term search for *diabetes* across all reported events, as well as *blood glucose increased*, *hyperglycemia* and *hyperglycemic* in the subset of Grade 3 or higher events. *Gestational diabetes* and *pre-diabetes* were excluded. Diabetes is classified as confirmed based on initiation of *anti-diabetic therapy*. If a participant was taking anti-diabetic therapy at the time of the diabetes diagnosis, the event was confirmed at diagnosis. Incidence rate estimation was limited to the participants without pre-existing diabetes at enrollment.

Myalgia, muscle weakness, and myopathy events were identified based on MedDRA terminology by a preferred term search on: *myalgia*, *myopathy*, and *muscular weakness*. Targeted events were those that were grade 3 or higher or resulted in a change to study treatment. Grade 3 or higher myopathy is also described.

Rhabdomyolysis events are identified via MedDRA preferred term search for *rhabdomyolysis*, excluding *Haff syndrome* based on the literal entered by the site. Note that participants with rhabdomyolysis are separate from those with myalgia/myopathy due REPRIEVE reporting requirements to enter the primary diagnosis only.

Analysis Population

Unless otherwise specified, summaries by treatment group follow intention-to-treat approach, where participants are included according to their randomized treatment group, whether or not they started study treatment or subsequent changes to that treatment.

Statistical Significance

Except for the primary efficacy analysis, statistical comparisons are presented with two-sided 95% confidence intervals are provided. The primary efficacy analysis uses significance level according to the realized Lan and DeMets implementation of the O'Brien-Fleming sequential stopping boundary with associated repeated confidence interval. The first interim analysis occurred at 55% (n=159 endpoints) and the second at 78% (n=225 endpoints) information, at which point the trial stopped for efficacy. As such, the primary efficacy analysis uses the boundary information from the interim analysis at 78% information. The corresponding efficacy boundary p-value is 0.02084, and the Z-value 2.31; the 95% repeated confidence interval (RCI) is a 97.9% nominal confidence interval.

Except the adjustment for interim monitoring in the primary analysis described above, no adjustment is made for multiple comparisons. However, with the primary clinical and substudy hypotheses, and various secondary outcome measures, it is recognized that there is a multiplicity of analyses to be performed and inference is tempered accordingly.

Analysis Approaches

Event incidence for Primary MACE and associated secondary and supportive outcomes were estimated as number of events divided by total person years of follow-up. Stratified incidence rate ratios estimated

from Poisson regression models adjusted for stratification factors (sex and screening CD4 cell count) are provided with nominal 95% confidence intervals.

The primary analysis of treatment efficacy used a stratified Cox proportional hazards regression model with cause-specific hazards, with separate cause-specific baseline hazards by sex and screening CD4 cell count. Time from randomization to the first event of interest was evaluated. In line with the primary estimand, treatment discontinuation was ignored, including the initiation of statin therapy as part of clinical care (intention to treat policy). Deaths from non-CV causes (competing events precluding occurrence of Primary MACE) are censored at the time of death in accordance with the ICH E9(R1) "while alive" strategy. The relative cause-specific hazard of pitavastatin versus placebo for First Primary MACE was estimated with a repeated 95% confidence interval and a nominal p-value from a Wald test is presented.

Cumulative incidence functions were estimated using Aalen estimator for probability of subdistribution of failure of interest.

Similar analyses are presented for the secondary and supporting outcome measures. In the analysis of First Confirmed MACE, both non-CV deaths and deaths of undetermined cause are competing events. For First MACE or Death cumulative incidence over time is presented as one minus Kaplan-Meier survival estimate. Estimation for the first peripheral arterial revascularization component used a Bayes analysis with a non-informative prior using adaptive rejection Metropolis sampling. In this case, the interval shown is a 95% highest posterior density (HPD) interval. This unplanned analysis approach was used when conventional partial likelihood methods failed to provide a confidence interval as a result of zero events in the pitavastatin group. Given the highly skewed distribution of the posterior density, instability in the upper bound of the HPD interval was apparent with the values oscillating between one of 6 values between 0.13 and 0.66 despite otherwise good convergence diagnostics. The most conservative (widest) interval is displayed.

To supplement the primary estimand, an as-treated estimand was defined that censored treatment discontinuation as a competing risk event to estimate the pitavastatin effect when taken as prescribed as compared to no statin therapy. Although the original analysis plan called for censoring of follow-up at the time of discontinuation, on review of the results this approach appeared to be over censoring events (nearly 50% of first Primary MACE events were censored). Without further review of the data, the as-treated censoring plan was changed to censor follow-up 30 days after treatment discontinuation. Upon further review of the data, it was clear that treatment discontinuation due to death was being incorrectly censored at the date of that known dose often many weeks prior to the death. In these cases, the last known dose reported likely reflects the last contact with the participant at previous scheduled study visit (quarterly visits +/- 30-day window). For the as-treated analysis presented, participants discontinuing due to death with a last known dose within 180 days of death were assumed to have continued treatment until death; if last known dose was more than 180 days after last known dose.

Further, to better reflect the REPRIEVE treatment conditions of pitavastatin versus statin initiation when clinically indicated, a per-protocol estimand was added in which treatment discontinuation due to clinical need for statin therapy was <u>not</u> considered a treatment discontinuation event, thus estimating the effect of immediate pitavastatin when taken as prescribed as compared to delayed statin therapy initiated when clinically indicated.

Incidence rates for adverse events were estimated using Poisson distribution based on date of the first event of interest or latest participant contact on study (in absence of a preceding event), with time calculated from date of randomization. Incidence rate ratios are provided for comparisons between the two treatment groups. Poisson models adjusted for stratification factors (sex and screening CD4 cell count) were used for estimation.

The full distributions of fasting LDL and non-LDL cholesterols over time are presented with both distribution summaries (median and first and 3rd quartiles) and population averages (mean and 95% confidence interval) by treatment group. The pre-specified analyses of lipids is planned based on the full study database. LDL cholesterol is limited to participants with triglycerides <500 mg/dL; derived as calculated LDL at triglycerides <400 mg/dL and direct LDL at triglycerides 400-<500 mg/dL.

Sensitivity Analyses for Unknown Primary Endpoint Status (see Figure S5)

In the primary analysis of pitavastatin effect on First Primary MACE, endpoints and follow-up time were censored on December 30, 2022, the last contact, or at the time of primary or competing event, whichever occurred earliest. A total of 37,091 PYs were observed for 7769 participants, 18,521 for 3888 pitavastatin group participants and 18,570 for 3881 placebo group participants.

As of December 30, 2022, 623 (16%) participants in the pitavastatin group, and 592 (15%) in the placebo group, had unknown primary endpoint status and no contact >10 months. For these participants, 4,532 PYs would have accrued between their last contact and December 30, 2022 ("unobserved follow-up time"): 2,379 PYs in the pitavastatin and 2,153 PYs in the placebo group.

In order to assess the impact of missing data from these participants, we performed a simulation study to evaluate the overall statin effect based on the accumulated data out to December 30, 2022 (aka observed data) and under a range of scenarios for the unobserved data.

Event accumulation for unobserved data in each treatment group was assumed to follow the current trends (Figure S3) times a constant (1 for current trend; 2x, 3x and 5x higher; and 2x, 3x and 10x lower than the current trend). For example, in one scenario, events for unobserved follow-up time in the pitavastatin group were assumed to occur at a rate twice (2x) that currently observed (i.e., 9.61 / 1000 PY) whereas those in the placebo group were assumed to occur at the current observed rate (7.32 /1000PY). In each case, simulations for future data also assume: follow-up from last contact to December 30, 2022; a rate of non-CVD death of 5/ 1000 PY (consistent with the original sample size considerations, and the observed data); and no further loss to follow-up. Endpoints (n=2) and non-CV deaths (n=7) from vital status follow-up were included as observed data in simulations. 1,000 simulations for unobserved data were performed for each scenario. The stratified Cox proportional hazards model was used to estimate the treatment effect (HR with 95% RCI) based on observed and simulated data combined.

Averages across 1,000 simulations are shown, including for lower and upper bounds of the 95% RCI. As such, the actual coverage probability of the confidence intervals may differ slightly from 95%.

Methods for Lipids and Glucose

Fasting lipids using serum obtained from separator tubes and plasma glucose from sodium fluoride/potassium oxalate tubes were collected and stored at ultrafreezer temperatures in a central repository for batch testing at approximately 6-month intervals by Quest Diagnostics (Baltimore, MD and Teterboro/Clifton, NJ) using commercially available US Food and Drug Administration cleared methods. Total cholesterol, high-density lipoprotein cholesterol, and triglycerides were measured by enzymatic techniques and low-density lipoprotein cholesterol was calculated for those specimens with triglyceride levels <400 mg/dL. Specimens with triglyceride quantities above that level were reflex tested using a direct low-density lipoprotein cholesterol technique. Glucose was measured using a hexokinase technique.

Section 3: Supplementary Figures and Tables

Figure S1: CONSORT Diagram

Participants were asked to rate their adherence to study medication since the last visit. An average of the assessments in each year is shown. Percentage (no.) of participants for the pitavastatin and percentage [no.] for the placebo group are shown below bars. Percentages are out of participants with at least one questionnaire completed in a given time period shown below each time point.

Figure S3: Incidence of First MACE and Other Efficacy Endpoints

	Pitavastatin IR/1000PY (#events)	Placebo IR/1000PY (#events)									
Primary endpoint and supporting analyses											
First MACE	4.81 (89)	7.32 (136)			· ⊢-♦I ŀ						
First MACE including VS follow-up	4.75 (90)	7.22 (137)			⊢ ♦ – I ⊢						
First Confirmed MACE	3.83 (71)	5.92 (110)		F	→ -						
First MACE (as-treated analysis)	4.44 (77)	6.25 (107)				→ i					
First MACE (per-protocol analysis)	4.54 (80)	6.77 (120)									
Secondary endpoints and supporting analyses											
First MACE or Death	9.18 (170)	11.63 (216)					→ p1_	→			
First MACE or Death including VS follow-up	9.13 (173)	11.70 (222)						→			
Death (all-cause)	6.17 (116)	6.83 (129)			┝╌┰●						
Individual components of MACE											
First Cardiac Ischemia or MI	1.40 (26)	2.51 (47)	H	┲┋╪╺╌┥							
First Cerebrovascular (Stroke or TIA)	1.56 (29)	2.36 (44)	H								
First Peripheral Arterial Ischemia	0.11 (2)	0.16 (3)	-								
CV Death	0.64 (12)	0.85 (16)	H H								
CV or Undetermined Death	1.60 (30)	2.24 (42)	H								
First Cardiac Catheterization or Revascularization	0.97 (18)	1.66 (31)	H ● ⊨								
First Carotid or Cerebrovascular Revascularization	0 (0)	0 (0)	*								
First Peripheral Arterial Revascularization	0 (0)	0.32 (6)	1								
Competing events for First MACE											
Non-CV Death ¹	4.39 (82)	4.31 (81)									
			0.0	2.5	5.0	7.5	10.0	12.5			
			Incidence rate /1000PY (95% Cl)								

Incidence rates were estimated using Poisson distribution based on the earliest event, last contact or 12/30/2022, whichever was earlier; participants with no contact after entry were included with 1 day imputed as censoring time. The widths of the CIs have not been adjusted for multiplicity. Thus, the confidence intervals should not be used to reject or not reject pitavastatin effect.

¹ All non-CV deaths are included; 2 in the pitavastatin group and 4 in the placebo group occurred subsequent to MACE endpoints. CI denotes confidence interval, CV cardiovascular, IR incidence rate, MACE major adverse cardiovascular event, MI myocardial infarction; PY person-years, TIA transient ischemic attack, VS vital status.

Figure S4: Treatment Effect from Adjusted Stratified Cox Proportional Hazards Models

	N	Pitavastatir IR/1000PY (#events)	n N	Placebo IR/1000PY (#events)					HR (95% CI)	Nomina P-value
First MACE										
Stratified Cox proportional hazards model (A)	3888	4.81 (89)	3881	7.32 (136)	-	•	1		0.65 (0.48, 0.90)	0.002
> Adjusted for ASCVD risk score (B)	3888	4.81 (89)	3881	7.32 (136)	\vdash	•	1		0.66 (0.48, 0.90)	0.002
> Adjusted for multiple factors (C)	3885	4.81 (89)	3874	7.34 (136)	\vdash	•	1		0.66 (0.48, 0.91)	0.003
First MACE or Death										
Stratified Cox proportional hazards model (A)	3888	9.18 (170)	3881	11.63 (216)		-	-		0.79 (0.65, 0.96)	
> Adjusted for ASCVD risk score (B)	3888	9.18 (170)	3881	11.63 (216)		-	-		0.79 (0.64, 0.96)	
> Adjusted for multiple factors (C)	3885	9.19 (170)	3874	11.65 (216)		⊢+			0.80 (0.65, 0.98)	
					0.5	0.7	1	1.4	2	
				Pit	H avastat	lazard Ra tin(N=38	atio (9 88)/Pl	5% CI) acebo(N	=3881)	

Stratified (by sex and screening CD4 cell count) Cox proportional hazards model with treatment group as the only covariate is the primary analysis (A). Further models were evaluated adjusting for (B) ASCVD risk score, and for (B) age, race, smoking status, race, presence of hypertension, screening LDL-C, nadir CD4, total ART duration and GBD region as covariates. For the First MACE endpoint, non-CV deaths without MACE were treated as competing events and censored.

For the First MACE, two-sided 95% repeated CIs round the cause-specific HR estimates and nominal Wald test p-values are shown. For reference, the efficacy boundary p-value for First MACE comparison accounting for interim looks is 0.02084.

For the First MACE or Death, two-sided nominal 95% CIs are shown. The widths of the CIs have not been adjusted for multiplicity. Thus, the confidence intervals should not be used to reject or not reject pitavastatin effect.

For visual purposes, the data on the x-axis are shown in the log scale.

ASCVD denotes atherosclerotic cardiovascular disease, ART antiretroviral therapy, CI confidence interval, HR hazard ratio, IR incidence rate, GBD global burden of disease, LDL-C LDL cholesterol, PY person-years.

Figure S5: Sensitivity Analyses for the Primary Endpoint to Assess Impact of Missing Data

	IRa	Pitavastatin IR (#events)	IRa	Placebo IR (#events)		HR (95% RCI)			
Primary results	-	4.81 (89.0)	-	7.32 (136.0)	—	0.65 (0.48, 0.90)			
Same as observed	4.81	4.87 (101.5)	7.32	7.38 (152.4)	├── ◆──┤	0.66 (0.49, 0.89)			
Pitavastatin group IR 2x higher	9.61	5.40 (112.4)	7.32	7.38 (152.4)	├── ┥	0.73 (0.55, 0.98)			
Pitavastatin group IR 3x higher	14.42	5.92 (123.2)	7.32	7.38 (152.4)	⊢	0.80 (0.61, 1.06)			
Pitavastatin group IR 5x higher	24.03	6.91 (143.4)	7.32	7.38 (152.4)	├ +	0.94 (0.72, 1.23)			
Placebo group IR 2x lower	4.81	4.87 (101.5)	3.66	7.00 (144.8)	├──	0.70 (0.52, 0.94)			
Placebo group IR 3x lower	4.81	4.87 (101.5)	2.44	6.87 (142.1)	⊢	0.71 (0.52, 0.96)			
Placebo group IR 10x lower	4.81	4.87 (101.5)	0.73	6.69 (138.5)	├── -1	0.73 (0.54, 0.98)			
Pitavastatin group IR 2x lower	2.40	4.59 (95.8)	7.32	7.38 (152.4)	⊢	0.62 (0.46, 0.84)			
Pitavastatin group IR 3x lower	1.60	4.50 (93.8)	7.32	7.38 (152.4)	⊢	0.61 (0.45, 0.83)			
Pitavastatin group IR 10x lower	0.48	4.37 (91.2)	7.32	7.38 (152.4)		0.59 (0.44, 0.80)			
Placebo group IR 2x higher	4.81	4.87 (101.5)	14.65	8.10 (167.2)		0.60 (0.45, 0.80)			
Placebo group IR 3x higher	4.81	4.87 (101.5)	21.97	8.81 (181.6)		0.55 (0.41, 0.74)			
Placebo group IR 5x higher	4.81	4.87 (101.5)	36.62	10.18 (209.0)	├── ◆──┤	0.48 (0.36, 0.63)			
					0.4 0.6 0.8 1	1.4			
Hazard Ratio (95% Cl) Pitavastatin(N=3888)/Placebo(N=3881)									

The data presented are: assumed incidence rate /1000 PY for time with unknown endpoint status (IRa), number of participants with events, estimated incidence rate /1000 PY (IR), HR with 95% CI. Incidence rates are estimated using Poisson distribution. For simulated data, the mean IR and the mean number of events across 1000 simulations are shown. Cause-specific hazard ratio estimates with 95% repeated CI are from stratified (by sex and screening CD4 cell count) Cox proportional hazards models. For simulations, the means of HR estimate, lower and upper bounds of the repeated 95% CI across 1000 simulations are shown.

CI denotes confidence interval, HR hazard ratio, IR incidence rate, IRa assumed incidence rate, PY person-years.

Violin plots presenting Kernel estimate of probability density function, and mean (circle), median (yellow dash), Q1-Q3 (box) and P5-P95 (whiskers); means with 95% CIs are shown in the axis table. Fasting samples are tested centrally in batch; results available as of 12/30/2022 are presented.

. CI denotes confidence interval, P5 5th percentile, P95 95th percentile, Q1 lower quartile, Q3 upper quartile.

Figure S7: Muscle Ache and Weakness by Participant Report*

(a) Muscle ache

(b) Muscle weakness

Evaluations are conducted as participant interviews by the site staff. Assessments at individual visits are shown to Month 12, the worst grade across quarterly visits is shown annually. Percentages are out of participants with at least one questionnaire completed in a given period, shown below bars.

*Y-axis is truncated at 50%. Bars show percentage of participant reports by grade (grade 0 not shown).

Figure S8: 5-year Number Needed To Treat by ASCVD Risk Score at Enrollment

(b) 5-year NNT

Panel (a): The distribution of ASCVD risk at enrollment is shown on the x-axis; estimated incidence of first MACE is shown on the Y-axis in the placebo group. The point estimate shows the estimated incidence rate plotted at the median ASCVD risk score by subgroups of ASCVD risk score. The vertical error bars on the point estimate show the 95% CI on the estimated incidence rate; the horizontal error bars give the P10 and P90 of the ASCVD risk distribution. The individual observed ASCVD risk scores are jittered on the X and Y-axes for clarity. Panel (b): 5-year NNT overall and by ASCVD risk score at enrollment. For the 5-year NNT by ASCVD risk score, cumulative incidence of first MACE by 5 years in the placebo group was estimated using Cox proportional hazards model; cumulative incidence in the pitavastatin group was calculated based on the placebo group estimates and the overall treatment effect of 35% reduction in events with pitavastatin. ASCVD denotes atherosclerotic cardiovascular disease, CI confidence interval, IR incidence rate, NNT number needed to treat, P10 10th percentile, P90 90th percentile, PY person-years.

		Pitavastatin (N=3888)	Placebo (N=3881)	Total (N=7769)	High Income (N=4095)	Latin America and Caribbean (N=1423)	S.East/East Asia (N=590)	South Asia (N=504)	Sub-Saharan Africa (N=1157)
Age (yr)	Median (Q1, Q3)	50 (45, 55)	50 (45, 55)	50 (45, 55)	51 (46, 55)	50 (45, 55)	47 (44, 52)	47 (44, 52)	49 (44, 54)
	Min, Max	40, 72	40, 74	40, 74	40, 74	40, 74	40, 66	40, 70	40, 72
— no. (%)	40-49	1842 (47)	1888 (49)	3730 (48)	1724 (42)	694 (49)	371 (63)	335 (66)	606 (52)
	50-59	1712 (44)	1649 (42)	3361 (43)	1996 (49)	583 (41)	194 (33)	140 (28)	448 (39)
	60+	334 (9)	344 (9)	678 (9)	375 (9)	146 (10)	25 (4)	29 (6)	103 (9)
Sex — no. (%)	Male	2677 (69)	2673 (69)	5350 (69)	3217 (79)	1019 (72)	257 (44)	375 (74)	482 (42)
	Female	1211 (31)	1208 (31)	2419 (31)	878 (21)	404 (28)	333 (56)	129 (26)	675 (58)
Gender identity — no. (%)	Cisgender	3687 (95)	3680 (95)	7367 (95)	3742 (91)	1398 (98)	568 (96)	503 (100)	1156 (100)
	Transgender Spectrum	63 (2)	64 (2)	127 (2)	87 (2)	21 (1)	18 (3)	1 (<1)	0 (0)
	Not reported	138 (4)	137 (4)	275 (4)	266 (6)	4 (<1)	4 (1)	0 (0)	1 (<1)
Race ¹ — no. (%)	Black or African American	1569 (40)	1639 (42)	3208 (41)	1675 (41)	379 (27)	0 (0)	0 (0)	1154 (100)
	White	1364 (35)	1340 (35)	2704 (35)	2154 (53)	546 (38)	2 (<1)	0 (0)	2 (<1)
	Asian	571 (15)	567 (15)	1138 (15)	44 (1)	2 (<1)	588 (100)	504 (100)	0 (0)
	Other	384 (10)	335 (9)	719 (9)	222 (5)	496 (35)	0 (0)	0 (0)	1 (<1)
Ethnicity for North America ² — no. (%)	Hispanic or Latino	366 (19)	332 (17)	698 (18)	662 (1)	36 (100)	-	-	-
	Not Hispanic or Latino	1575 (80)	1611 (82)	3186 (81)	3186 (82)	0 (0)	-	-	-
	Unknown	16 (1)	18 (1)	34 (1)	34 (1)	0 (0)	-	-	-
Smoking status — no. (%)	Current	920 (24)	1014 (26)	1934 (25)	1289 (32)	292 (21)	69 (12)	69 (14)	215 (19)
	Former	986 (25)	918 (24)	1904 (25)	1217 (30)	368 (26)	122 (21)	21 (4)	176 (15)
	Never	1979 (51)	1944 (50)	3923 (51)	1581 (39)	763 (54)	399 (68)	414 (82)	766 (66)
Substance use — no. (%)	Current	75 (2)	77 (2)	152 (2)	124 (3)	24 (2)	4 (1)	0 (0)	0 (0)
	Former	1142 (29)	1134 (29)	2276 (29)	2057 (50)	176 (12)	39 (7)	0 (0)	4 (<1)
	Never	2669 (69)	2664 (69)	5333 (69)	1906 (47)	1223 (86)	547 (93)	504 (100)	1153 (100)

		Pitavastatin (N=3888)	Placebo (N=3881)	Total (N=7769)	High Income (N=4095)	Latin America and Caribbean (N=1423)	S.East/East Asia (N=590)	South Asia (N=504)	Sub-Saharan Africa (N=1157)
ASCVD risk score (%)	Median (Q1, Q3)	4.5 (2.1, 7.0)	4.5 (2.2, 7.0)	4.5 (2.1, 7.0)	5.2 (2.9, 7.6)	4.4 (2.5, 6.9)	1.8 (0.9, 4.2)	2.7 (1.1, 5.2)	3.8 (1.3, 6.6)
— no. (%)	0-<2.5	1096 (28)	1060 (27)	2156 (28)	820 (20)	348 (24)	344 (58)	225 (45)	419 (36)
	2.5-<5	1030 (26)	1025 (26)	2055 (26)	1090 (27)	435 (31)	117 (20)	135 (27)	278 (24)
	5-<7.5	934 (24)	960 (25)	1894 (24)	1137 (28)	338 (24)	83 (14)	87 (17)	249 (22)
	7.5-10	540 (14)	561 (14)	1101 (14)	696 (17)	209 (15)	32 (5)	41 (8)	123 (11)
	>10	288 (7)	275 (7)	563 (7)	352 (9)	93 (7)	14 (2)	16 (3)	88 (8)
BMI (kg/m²)	Median (Q1, Q3)	25.7 (22.8, 29.4)	25.8 (22.7, 29.3)	25.8 (22.8, 29.4)	26.8 (23.9, 30.6)	25.8 (23.3, 28.7)	22.7 (20.5, 25.0)	22.9 (20.2, 25.9)	24.7 (21.2, 29.6)
— no. (%)	<18.5	151 (4)	136 (4)	287 (4)	56 (1)	22 (2)	49 (8)	63 (13)	97 (8)
	18.5-24.9	1548 (40)	1570 (40)	3118 (40)	1354 (33)	581 (41)	393 (67)	285 (57)	505 (44)
	25-29.9	1331 (34)	1332 (34)	2663 (34)	1535 (38)	572 (40)	138 (23)	123 (24)	295 (25)
	30+	856 (22)	839 (22)	1695 (22)	1144 (28)	248 (17)	10 (2)	33 (7)	260 (22)
Diabetes mellitus — no. (%)		23 (1)	14 (<1)	37 (<1)	25 (1)	5 (<1)	1 (<1)	5 (1)	1 (<1)
Chronic active HCV — no. (%)		72 (2)	82 (2)	154 (2)	131 (3)	7 (<1)	15 (3)	0 (0)	1 (<1)
Hypertension — no. (%)		1392 (36)	1382 (36)	2774 (36)	1538 (38)	522 (37)	141 (24)	165 (33)	408 (35)
Family history of premature CVD	— no. (%)	724 (19)	692 (18)	1416 (19)	968 (25)	296 (22)	55 (9)	22 (4)	75 (7)
Ever been on a statin — no. (%)		250 (6)	244 (6)	494 (6)	324 (8)	81 (6)	47 (8)	17 (3)	25 (2)
Total cholesterol (mg/dL) ³	Median (Q1, Q3)	186 (163, 209)	184 (161, 208)	185 (162, 209)	184 (162, 208)	191 (167, 215)	201 (177, 223)	181 (159, 206)	174 (154, 198)
HDL-C (mg/dL) ³	Median (Q1, Q3)	48 (39, 59)	48 (39, 59)	48 (39, 59)	49 (40, 59)	44 (36, 55)	48 (40, 57)	41 (35, 51)	55 (44, 66)
LDL-C (mg/dL) ³	Median (Q1, Q3)	109 (87, 128)	108 (87, 127)	108 (87, 128)	107 (87, 126)	114 (93, 134)	122 (103, 141)	107 (87, 126)	97 (78, 118)
— no. (%)	<70	393 (10)	407 (10)	800 (10)	412 (10)	110 (8)	16 (3)	63 (13)	199 (17)
	70-<130	2580 (66)	2637 (68)	5217 (67)	2841 (69)	890 (63)	347 (59)	332 (66)	807 (70)
	130-<160	717 (18)	681 (18)	1398 (18)	693 (17)	330 (23)	165 (28)	88 (17)	122 (11)
	160+	198 (5)	156 (4)	354 (5)	149 (4)	93 (7)	62 (11)	21 (4)	29 (3)
Triglycerides (mg/dL) ³	Median (Q1, Q3)	115 (82, 169)	114 (80, 169)	114 (81, 169)	112 (80, 165)	138 (94, 200)	122 (87, 179)	137 (96, 205)	89 (67, 128)

Table S1: Baseline Characteristics by Treatment Group and Global Burden of Disease Super Region, Continued

		Pitavastatin (N=3888)	Placebo (N=3881)	Total (N=7769)	High Income (N=4095)	Latin America and Caribbean (N=1423)	S.East/East Asia (N=590)	South Asia (N=504)	Sub-Saharan Africa (N=1157)
Time since HIV diagnosis (years)	Median (Q1, Q3)	12 (7, 19)	13 (8, 19)	13 (8, 19)	15 (9, 22)	9 (5, 15)	17 (12, 20)	10 (7, 13)	10 (7, 13)
Time since HIV diagnosis (years) Nadir CD4 (cells/mm ³) — no. (%) Total ART use (years) — no. (%) Entry ART regimen class — no. (%) CD4 count (cells/mm ³) HIV-1 RNA (copies/mL) ⁴ — no. (%)	<200	1890 (49)	1911 (49)	3801 (49)	1945 (47)	610 (43)	359 (61)	313 (62)	574 (50)
	200-349	Pitavastatin (N=3888) Placebo (N=3881) Total (N=7769) High Income (N=4095) Latin America and Caribbean (N=423) S.East/East Asia (N=590) Median (Q1, Q3) 12 (7, 19) 13 (8, 19) 13 (8, 19) 15 (9, 22) 9 (5, 15) 17 (12, 20) <200	141 (28)	284 (25)					
	350+	840 (22)	825 (21)	1665 (21)	938 (23)	377 (26)	41 (7)	50 (10)	Sub-Saharan Africa (N=1157) (7, 13) 10 (7, 13) 3 (62) 574 (50) 1 (28) 284 (25) 1 (10) 259 (22) (0) 40 (3) 3 (28) 341 (29) 5 (41) 403 (35) 5 (31) 413 (36) 0 (81) 982 (85) (1) 25 (2) (16) 133 (11) (2) 3 (<1)
	Unknown	139 (4)	123 (3)	262 (3)	198 (5)	24 (2)	0 (0)	0 (0)	40 (3)
Total ART use (years) — no. (%)	<5	847 (22)	857 (22)	1704 (22)	675 (16)	490 (34)	55 (9)	143 (28)	341 (29)
	5-10	1190 (31)	1118 (29)	2308 (30)	1115 (27)	462 (32)	123 (21)	205 (41)	403 (35)
	10+	1851 (48)	1904 (49)	3755 (48)	2303 (56)	471 (33)	412 (70)	156 (31)	413 (36)
Entry ART regimen class — no. (%)	NRTI + NNRTI	1843 (47)	1826 (47)	3669 (47)	996 (24)	815 (57)	466 (79)	410 (81)	982 (85)
	NRTI + INSTI	998 (26)	993 (26)	1991 (26)	1875 (46)	85 (6)	3 (1)	3 (1)	25 (2)
	NRTI + PI	728 (19)	708 (18)	1436 (18)	674 (16)	442 (31)	105 (18)	Zeast a 90)South Asia (N=504)Sub-Sa Afri (N=1), 20)10 (7, 13)10 (7, 13)61)313 (62)574 (13)32)141 (28)284 (13)32)141 (28)284 (13)7)50 (10)259 (13)0)0 (0)40 (13)9)143 (28)341 (13)21)205 (41)403 (13)70)156 (31)413 (13)70)156 (31)413 (13)70)3 (1)25 (13)18)82 (16)133 (13)20)9 (2)3 (14)21)0 (0)14 (13)79)410 (81)982 (14)18)82 (16)133 (14)20)9 (2)3 (14)97)62 (82)310 (13)3)5 (7)58 (12)9)9 (12)13 (13)6:147*, 68)6265 (119, 68112)122 (40)	133 (11)
	NRTI-sparing	95 (2)	108 (3)	203 (3)	164 (4)	18 (1)	9 (2)	9 (2)	3 (<1)
	Other NRTI-containing	224 (6)	246 (6)	470 (6)	386 (9)	63 (4)	7 (1)	0 (0)	14 (1)
CD4 count (cells/mm ³)	Median (Q1, Q3)	620 (449, 832)	622 (445, 824)	621 (448, 827)	615 (447, 835)	658 (482, 865)	626 (476, 784)	591 (378, 758)	598 (433, 802)
HIV-1 RNA (copies/mL) ⁴ — no. (%)	<llq< td=""><td>2641 (88)</td><td>2609 (87)</td><td>5250 (88)</td><td>3391 (86)</td><td>1011 (93)</td><td>476 (97)</td><td>62 (82)</td><td>310 (81)</td></llq<>	2641 (88)	2609 (87)	5250 (88)	3391 (86)	1011 (93)	476 (97)	62 (82)	310 (81)
	LLQ -< 400	305 (10)	312 (10)	617 (10)	483 (12)	55 (5)	16 (3)	5 (7)	58 (15)
	400+	63 (2)	67 (2)	130 (2)	84 (2)	24 (2)	0 (0)	9 (12)	13 (3)
Quantifiable HIV-1 RNA (copies/mL)	Ν	368	379	747	567	79	16	14	71
	Median (Q1, Q3)	63 (34, 198)	62 (34, 202)	62 (34, 199)	54 (31, 152)	109 (52, 733)	54 (33, 68)	6265 (119, 68112)	122 (40, 299)

Table S1: Baseline Characteristics by Treatment Group and Global Burden of Disease Super Region, Continued

Frequency and percentage are presented for categorical measures and medians with lower and upper quartiles (Q1, Q3) for continuous measures. For age, minimum (min) and maximum (max) are also shown. All statistics are calculated out of participants with data collected. Missing data include: BMI (n=6), Family history of premature CVD (n=252), Smoking status (n=8), Substance use (n=8), Time since HIV diagnosis (n=4), Total ART use (n=2), HIV-1 RNA (n=1772).

¹ 'Other' race includes participants self-identifying as: native or indigenous to the enrollment region, more than one race (with no single race noted as predominant), or of unknown race. ² Ethnicity presented per NIH definition for participants in the US (including Puerto Rico) and Canada only; not applicable in other geographic regions.

³ Screening lipid panel from clinical care used for eligibility is presented. Fasting was not required, if random laboratory values to determine eligibility were within the range specified by the protocol.

⁴ HIV-1 RNA was captured if available through standard of care. The assays used for testing varied, including assays with LLQ between 20 and 400 copies/mL. Summary of quantifiable levels is limited to those with HIV-1 RNA ≥LLQ.

ART denotes antiretroviral therapy, ASCVD atherosclerotic cardiovascular disease, BMI body mass index, HCV, hepatitis C virus, HDL-C HDL cholesterol, LDL-C LDL cholesterol, LLQ lower limit of quantitation, NRTI nucleoside reverse transcriptase inhibitor, INSTI integrase strand transfer inhibitor, NNRTI non-nucleoside reverse transcriptase inhibitor.

Table S2: Details of First MACE Endpoints

Event type	Total (N=225)	Pitavastatin (N=89)	Placebo (N=136)		
All Cerebrovascular Events (Stroke or TIA) — no. (%)	72 (32)	29 (33)	43 (32)		
Stroke Ischemic	43 (19)	15 (17)	28 (21)		
Hemorrhagic	10 (4)	2 (2)	8 (6)		
Undetermined	2 (1)	1 (1)	1 (1)		
Transient Ischemic Attack (TIA)	17 (8)	11 (12)	6 (4)		
All Cardiac Ischemia or MI Events — no. (%)	71 (32)	25 (28)	46 (34)		
Myocardial Infarction Type 1	50 (22)	16 (18)	34 (25)		
Type 2	13 (6)	7 (8)	6 (4)		
Unstable Angina	8 (4)	2 (2)	6 (4)		
All Deaths — no. (%)	63 (28)	28 (31)	35 (26)		
CV Death Sudden Cardiac Death	16 (7)	8 (9)	8 (6)		
Cardiovascular Causes	1 (0)	1 (1)	0 (0)		
Cardiovascular Hemorrhage	1 (0)	0 (0)	1 (1)		
Heart Failure	1 (0)	1 (1)	0 (0)		
Undetermined	44 (20)	18 (20)	26 (19)		
All Cardiac Catheterization or Revascularization Events no. (%)	63 (28) 28 (31) 35 16 (7) 8 (9) 8 1 (0) 1 (1) 0 1 (0) 0 (0) 1 1 (0) 0 (0) 1 1 (0) 1 (1) 0 44 (20) 18 (20) 26 12 (5) 5 (6) 7 9 (4) 3 (3) 6 1 (0) 1 (1) 0 2 (1) 1 (1) 1 4 (2) 2 (2) 2 2 (1) 1 (1) 1				
Percutaneous (PCI) Elective	9 (4)	3 (3)	6 (4)		
Urgent	1 (0)	1 (1)	0 (0)		
Surgical (CABG) Elective	2 (1)	1 (1)	1 (1)		
All Peripheral Arterial Ischemia Events — no. (%)	4 (2)	2 (2)	2 (1)		
Acute Limb Ischemia (ALI)	2 (1)	1 (1)	1 (1)		
Critical Limb Ischemia (CLI)	2 (1)	1 (1)	1 (1)		
All Peripheral Arterial Revascularization Events no. (%)	3 (1)	0 (0)	3 (2)		
Percutaneous Elective	2 (1)	0 (0)	2 (1)		
Surgical Elective	1 (0)	0 (0)	1 (1)		

Percentages are out of all MACE endpoints in total, and within each treatment group.

Some event names have been abbreviated: unstable angina requiring hospitalization as unstable angina, hospitalization for acute limb ischemia (ALI) as acute limb ischemia (ALI), hospitalization for critical limb ischemia (CLI) as critical limb ischemia (CLI). ALI denotes acute limb ischemia, CABG coronary artery bypass grafting, CLI critical limb ischemia, MI myocardial infarction, PCI percutaneous coronary intervention, TIA transient ischemic attack.

Table S3: Details of MACE and Death Endpoints Captured from Vital Status Follow-up

Event type		Total (N=9)	Pitavastatin (N=3)	Placebo (N=6)
All Deaths — no. (%)		8 (89)	3 (100)	5 (83)
Non-CV Death	Non-AIDS-Defining Malignancies	3 (33)	1 (33)	2 (33)
	Accident or Homicide	1 (11)	0 (0)	1 (17)
	Central Nervous System	1 (11)	0 (0)	1 (17)
	Renal Failure	1 (11)	1 (33)	0 (0)
	Suicide or Psychiatric Disease	1 (11)	0 (0)	1 (17)
Undetermined		1 (11)	1 (33)	0 (0)
All Cardiac Ischemia or MI E	vents — no. (%)	1 (11)	0 (0)	1 (17)
Myocardial Infarction	Туре 1	1 (11)	0 (0)	1 (17)

Percentages are out of all MACE and death endpoints captured from vital status and endpoint follow-up in total, and within each treatment group.

AIDS denotes acquired immunodeficiency syndrome, MI denotes myocardial infarction, CV cardiovascular.

Table S4: Details of Non-CV Deaths

Cause of death	Total (N=163)	Pitavastatin (N=82)	Placebo (N=81)
Non-AIDS-Defining Malignancies — no. (%)	57 (35)	30 (37)	27 (33)
Non-AIDS-Related Infections — no. (%)	44 (27)	19 (23)	25 (31)
Substance Use — no. (%)	24 (15)	15 (18)	9 (11)
Accident or Homicide — no. (%)	16 (10)	7 (9)	9 (11)
AIDS Opportunistic Infections — no. (%)	11 (7)	5 (6)	6 (7)
Suicide or Psychiatric Disease — no. (%)	4 (2)	3 (4)	1 (1)
AIDS-Defining Malignancies — no. (%)	1 (1)	1 (1)	0 (0)
Gastrointestinal — no. (%)	1 (1)	0 (0)	1 (1)
Liver Failure — no. (%)	1 (1)	0 (0)	1 (1)
Lung Disease — no. (%)	1 (1)	1 (1)	0 (0)
Renal Failure — no. (%)	1 (1)	1 (1)	0 (0)
AIDS Other — no. (%)	1 (1)	0 (0)	1 (1)
Other — no. (%)	1 (1)	0 (0)	1 (1)
Non-ADS-Related infections — no. (%) Substance Use — no. (%) Accident or Homicide — no. (%) AIDS Opportunistic Infections — no. (%) Suicide or Psychiatric Disease — no. (%) AIDS-Defining Malignancies — no. (%) Gastrointestinal — no. (%) Liver Failure — no. (%) Renal Failure — no. (%) AIDS Other — no. (%)	44 (27) 24 (15) 16 (10) 11 (7) 4 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	19 (23) 15 (18) 7 (9) 5 (6) 3 (4) 1 (1) 0 (0) 1 (1) 1 (1) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	25 (31) 9 (11) 9 (11) 6 (7) 1 (1) 0 (0) 1 (1) 1 (1) 0 (0) 0 (0) 1 (1) 1 (1) 1 (1)

Deaths adjudicated as non-CV deaths with cause of death determined by the adjudication committee are shown. The total number of non-CV deaths is shown in column headers.

Table S5: Incidence of Non-Fatal Heart Failure

Event	Treatment Group	# Participants at risk	Total at-risk person-years	# Participants with event	Incidence Rate /1000PY (95% CI)
First non-fatal heart failure	Pitavastatin	3888	18,672	13	0.70 (0.40, 1.20)
	Placebo	3881	18,751	12	0.64 (0.36, 1.13)

Hospitalization for heart failure events as determined by the adjudication committee are summarized; events positively adjudicated as MACE endpoints are excluded. These are presented in Table S2,and include 1 fatal heart failure.

Incidence rates were estimated using Poisson distribution based on the earliest event, last contact or 12/30/2022, whichever was earlier; participants with no contact after entry were included with 1 day imputed as censoring time. The widths of the CIs have not been adjusted for multiplicity. Thus, the confidence intervals should not be used to reject or not reject pitavastatin effect.

Table S6: Non-Fatal Serious Adverse Events by MedDRA System Organ Class

	Total (N=7769)		I	Pitavastatin (N=3888)					Placebo (N=3881)		
	All	Grade 1	Grade 2	Grade 3	Grade 4	All	Grade 1	Grade 2	Grade 3	Grade 4	All
All participants with non-fatal SAEs — no. (%)	1389 (18)	4 (<1)	28 (<1)	562 (14)	101 (3)	695 (18)	2 (<1)	29 (<1)	541 (14)	122 (3)	694 (18)
Infections and infestations	509 (7)	0 (0)	7 (<1)	228 (6)	19 (<1)	254 (7)	0 (0)	10 (<1)	219 (6)	26 (<1)	255 (7)
Injury, poisoning and procedural complications	197 (3)	2 (<1)	4 (<1)	78 (2)	11 (<1)	95 (2)	1 (<1)	3 (<1)	83 (2)	15 (<1)	102 (3)
Gastrointestinal disorders	135 (2)	1 (<1)	4 (<1)	67 (2)	1 (<1)	73 (2)	0 (0)	0 (0)	59 (2)	3 (<1)	62 (2)
Respiratory, thoracic and mediastinal disorders	128 (2)	0 (0)	4 (<1)	48 (1)	11 (<1)	63 (2)	0 (0)	2 (<1)	45 (1)	18 (<1)	65 (2)
Neoplasms benign, malignant and unspecified	125 (2)	2 (<1)	3 (<1)	37 (<1)	15 (<1)	57 (1)	1 (<1)	5 (<1)	47 (1)	15 (<1)	68 (2)
Nervous system disorders	125 (2)	0 (0)	3 (<1)	59 (2)	3 (<1)	65 (2)	0 (0)	3 (<1)	53 (1)	4 (<1)	60 (2)
Psychiatric disorders	117 (2)	0 (0)	0 (0)	44 (1)	19 (<1)	63 (2)	0 (0)	2 (<1)	41 (1)	11 (<1)	54 (1)
Musculoskeletal and connective tissue disorders	98 (1)	0 (0)	5 (<1)	48 (1)	2 (<1)	55 (1)	0 (0)	2 (<1)	41 (1)	0 (0)	43 (1)
Renal and urinary disorders	61 (<1)	0 (0)	0 (0)	26 (<1)	7 (<1)	33 (<1)	0 (0)	0 (0)	20 (<1)	8 (<1)	28 (<1)
General disorders and administration site conditions	56 (<1)	0 (0)	4 (<1)	19 (<1)	2 (<1)	25 (<1)	2 (<1)	1 (<1)	27 (<1)	1 (<1)	31 (<1)
Metabolism and nutrition disorders	54 (<1)	0 (0)	1 (<1)	12 (<1)	9 (<1)	22 (<1)	0 (0)	1 (<1)	19 (<1)	12 (<1)	32 (<1)
Vascular disorders	52 (<1)	1 (<1)	4 (<1)	16 (<1)	3 (<1)	24 (<1)	0 (0)	3 (<1)	21 (<1)	4 (<1)	28 (<1)
Cardiac disorders ¹	51 (<1)	0 (0)	3 (<1)	18 (<1)	4 (<1)	25 (<1)	0 (0)	2 (<1)	18 (<1)	6 (<1)	26 (<1)
Hepatobiliary disorders	47 (<1)	0 (0)	0 (0)	19 (<1)	2 (<1)	21 (<1)	0 (0)	1 (<1)	23 (<1)	2 (<1)	26 (<1)
Investigations	43 (<1)	1 (<1)	0 (0)	11 (<1)	10 (<1)	22 (<1)	1 (<1)	0 (0)	10 (<1)	10 (<1)	21 (<1)
Blood and lymphatic system disorders	39 (<1)	0 (0)	0 (0)	12 (<1)	9 (<1)	21 (<1)	0 (0)	0 (0)	5 (<1)	13 (<1)	18 (<1)
Surgical and medical procedures	27 (<1)	0 (0)	1 (<1)	7 (<1)	0 (0)	8 (<1)	0 (0)	4 (<1)	15 (<1)	0 (0)	19 (<1)
Eye disorders	27 (<1)	1 (<1)	2 (<1)	17 (<1)	0 (0)	20 (<1)	0 (0)	0 (0)	7 (<1)	0 (0)	7 (<1)
Reproductive system and breast disorders	26 (<1)	0 (0)	0 (0)	15 (<1)	0 (0)	15 (<1)	0 (0)	0 (0)	11 (<1)	0 (0)	11 (<1)
Skin and subcutaneous tissue disorders	17 (<1)	0 (0)	0 (0)	8 (<1)	0 (0)	8 (<1)	0 (0)	1 (<1)	8 (<1)	0 (0)	9 (<1)
Ear and labyrinth disorders	8 (<1)	0 (0)	0 (0)	1 (<1)	0 (0)	1 (<1)	0 (0)	2 (<1)	5 (<1)	0 (0)	7 (<1)
Immune system disorders	6 (<1)	0 (0)	0 (0)	2 (<1)	0 (0)	2 (<1)	0 (0)	0 (0)	3 (<1)	1 (<1)	4 (<1)
Endocrine disorders	6 (<1)	0 (0)	0 (0)	2 (<1)	2 (<1)	4 (<1)	0 (0)	1 (<1)	1 (<1)	0 (0)	2 (<1)
Pregnancy, puerperium and perinatal conditions	1 (<1)	0 (0)	0 (0)	1 (<1)	0 (0)	1 (<1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Social circumstances	1 (<1)	0 (0)	0 (0)	1 (<1)	0 (0)	1 (<1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Product issues	1 (<1)	0 (0)	0 (0)	1 (<1)	0 (0)	1 (<1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Events are described by MedDRA System Organ Class (SOC) ordered by overall frequency, and are presented by Grade within each treatment group. Grade 1 (Mild), Grade 2 (Moderate), Grade 3 (Severe), Grade 4 (Potentially life-threatening) according to the DAIDS Table for Grading Severity of Adult and Pediatric Adverse Events, Corrected Version 2.1, July 2017. ¹Cardiac disorders include events classified under MedDRA SOC of Cardiac Disorders that are not part of the composite MACE outcome as well as events reviewed and determined as not MACE by the independent adjudication committee.

For the overall and SOC totals, each participant is counted only once and at the highest reported grade. A total of 2431 non-fatal SAEs were reported for 1389 participants. The most frequently reported MedDRA HLT was "lower respiratory tract and lung infections" (experienced by 2% of participants overall, and within each treatment group), no other HLT occurred in ≥1% participants. HLT denotes higher level term, MedDRA Medical Dictionary for Regulatory Activities, NEC not elsewhere classified, SAE serious adverse event, SOC system organ class.

Table S7: All Adverse Events by MedDRA System Organ Class and Higher-Level Term

	Total (N=7769)		F	Pitavastatir (N=3888)	1				Placebo (N=3881)		
	All	Grade 1	Grade 2	Grade 3	Grade 4	All	Grade 1	Grade 2	Grade 3	Grade 4	All
All participants with Adverse Events — no. (%)	2560 (33)	53 (1)	188 (5)	940 (24)	123 (3)	1304 (34)	60 (2)	162 (4)	894 (23)	140 (4)	1256 (32)
Infections and infestations — no. (%)	588 (8)	3 (<1)	21 (<1)	250 (6)	19 (<1)	293 (8)	1 (<1)	28 (<1)	240 (6)	26 (<1)	295 (8)
Lower respiratory tract and lung infections — no.	137	0	3	68	2	73	0	5	58	1	64
Abdominal and gastrointestinal infections — no.	80	0	1	37	1	39	0	3	36	2	41
Metabolism and nutrition disorders — no. (%)	585 (8)	46 (1)	163 (4)	86 (2)	17 (<1)	312 (8)	46 (1)	123 (3)	89 (2)	15 (<1)	273 (7)
Diabetes mellitus (including subtypes) — no.	383	42	166	6	1	215	36	114	15	3	168
General nutritional disorders NEC — no.	105	0	0	57	7	64	0	0	35	6	41
Investigations — no. (%)	508 (7)	6 (<1)	5 (<1)	216 (6)	28 (<1)	255 (7)	7 (<1)	7 (<1)	214 (6)	25 (<1)	253 (7)
Renal function analyses — no.	206	0	0	95	9	104	1	0	97	4	102
Physical examination procedures and organ system status — no.	122	3	4	50	3	60	1	0	55	6	62
Musculoskeletal and connective tissue disorders — no. (%)	356 (5)	14 (<1)	56 (1)	131 (3)	3 (<1)	204 (5)	15 (<1)	27 (<1)	108 (3)	2 (<1)	152 (4)
Muscle pains — no.	120	8	37	34	0	79	9	8	22	2	41
Musculoskeletal and connective tissue pain and discomfort - no.	92	5	4	39	0	48	6	6	32	0	44
Injury, poisoning and procedural complications — no. (%)	232 (3)	2 (<1)	5 (<1)	97 (2)	11 (<1)	115 (3)	1 (<1)	3 (<1)	98 (3)	15 (<1)	117 (3)
Limb fractures and dislocations — no.	99	0	1	43	2	46	0	2	50	1	53
Gastrointestinal disorders — no. (%)	231 (3)	9 (<1)	12 (<1)	101 (3)	1 (<1)	123 (3)	8 (<1)	10 (<1)	87 (2)	3 (<1)	108 (3)
Nervous system disorders — no. (%)	221 (3)	6 (<1)	17 (<1)	91 (2)	3 (<1)	117 (3)	7 (<1)	8 (<1)	85 (2)	4 (<1)	104 (3)
Vascular disorders — no. (%)	158 (2)	4 (<1)	8 (<1)	57 (1)	3 (<1)	72 (2)	9 (<1)	10 (<1)	61 (2)	6 (<1)	86 (2)
Vascular hypertensive disorders NEC - no.	93	4	4	34	1	43	7	5	35	3	50
Psychiatric disorders — no. (%)	157 (2)	1 (<1)	11 (<1)	60 (2)	19 (<1)	91 (2)	5 (<1)	3 (<1)	47 (1)	11 (<1)	66 (2)
Respiratory, thoracic and mediastinal disorders — no. (%)	154 (2)	2 (<1)	4 (<1)	62 (2)	11 (<1)	79 (2)	0 (0)	4 (<1)	53 (1)	18 (<1)	75 (2)
General disorders and administration site conditions — no. (%)	154 (2)	7 (<1)	20 (<1)	52 (1)	2 (<1)	81 (2)	10 (<1)	7 (<1)	55 (1)	1 (<1)	73 (2)
Pain and discomfort NEC — no.	96	4	9	29	0	42	6	5	43	0	54
Neoplasms benign, malignant and unspecified — no. (%)	148 (2)	2 (<1)	4 (<1)	47 (1)	15 (<1)	68 (2)	1 (<1)	8 (<1)	56 (1)	15 (<1)	80 (2)
Renal and urinary disorders — no. (%)	104 (1)	3 (<1)	2 (<1)	46 (1)	8 (<1)	59 (2)	3 (<1)	1 (<1)	33 (<1)	8 (<1)	45 (1)
Cardiac disorders ¹ — no. (%)	93 (1)	2 (<1)	7 (<1)	31 (<1)	4 (<1)	44 (1)	1 (<1)	8 (<1)	34 (<1)	6 (<1)	49 (1)
Blood and lymphatic system disorders — no. (%)	78 (1)	0 (0)	0 (0)	34 (<1)	9 (<1)	43 (1)	1 (<1)	0 (0)	21 (<1)	13 (<1)	35 (<1)

Events are described by MedDRA HLT grouped within system organ class (SOC) ordered by overall frequency. Only SOCs and HLTs reported by 1% or more participants are shown, the summary rows include all events. The summary is presented by Grade within each treatment group. Grade 1 (Mild), Grade 2 (Moderate), Grade 3 (Severe), Grade 4 (Potentially life-threatening) according to the DAIDS Table for Grading Severity of Adult and Pediatric Adverse Events, Corrected Version 2.1, July 2017.

For the overall, SOC and HLT totals, each participant is counted only once and at the highest reported grade. A total of 5114 AEs were reported for 2560 participants.

¹Cardiac disorders include events classified under MedDRA SOC of Cardiac Disorders that are not part of the composite MACE outcome as well as events reviewed and determined as not MACE by the independent adjudication committee. AE denotes adverse event, HLT higher level term, MedDRA Medical Dictionary for Regulatory Activities, NEC not elsewhere classified, SOC system organ class.

Table S8: Details of Myalgia and Myopathy Events

	Total (N=7769)	Pitavastatin (N=3888)									
	All	Grade 1	Grade 2	Grade 3	Grade 4	All	Grade 1	Grade 2	Grade 3	Grade 4	All
Participants with Myalgia or Myopathy — no. (%)	144 (2)	8 (<1)	39 (1)	43 (1)	1 (<1)	91 (2)	10 (<1)	13 (<1)	28 (<1)	2 (<1)	53 (1)
Myalgia — no.	120	8	37	34	0	79	9	8	22	2	41
Muscular weakness-no.	41	3	4	16	1	24	3	3	11	0	17
Myopathy— no.	9	0	1	3	0	4	1	3	1	0	5

Events are described by MedDRA PT, ordered by overall frequency. For the overall and event totals, each participant is counted only once and at the highest reported grade. Of the 7769 participants enrolled, 144 participants experienced at least one myalgia/myopathy event.

Grade 1 (Mild), Grade 2 (Moderate), Grade 3 (Severe), Grade 4 (Potentially life-threatening) according to the DAIDS Table for Grading Severity of Adult and Pediatric Adverse Events, Corrected Version 2.1, July 2017. MedDRA denotes Medical Dictionary for Regulatory Activities, PT preferred term.

Table S9: Representativeness of Study Participants

Category	Example
Disease, problem, or condition under	Atherosclerotic cardiovascular disease (ASCVD) among people with
investigation	HIV.
	The risk of incident ASCVD is estimated to be increased 2-fold among people with HIV vs. individuals without HIV. ³
Special considerations related to:	
Geography, Race, and Ethnicity	 Based on 2021 estimates, among the 38.4 million people with HIV:⁴ 20.6 million reside in Eastern and Southern Africa 5 million reside in Western and Central Africa 180,000 reside in North Africa and the Middle East 6 million reside in Asia and the Pacific 2.3 million reside in Latin America and the Caribbean 1.8 million reside in Eastern Europe and Central Asia 2.3 million reside in Western/Central Europe and North America
	In the US, HIV disproportionately affects individuals who are Black and Hispanic. In 2019, Black people comprised 13.4% of the US population but 40.3% of the US population living with HIV. Hispanic people comprised 18.5% of the US population, but 24.7% of the US population living with HIV. ⁵
	There are no previous data as to whether risks of atherosclerotic cardiovascular disease among the global population of people with HIV differ by region of residence, race, or ethnicity.
Sex and Gender	Across the globe, 54% of people with HIV are women or girls. ⁴
	There are no globally representative data describing the percentage of people with HIV whose gender identity differs from their sex assigned at birth.
	There are no previous data as to whether risk of ASCVD among the global population of people with HIV differs by sex or gender.
Age	More than 95% of people with HIV globally are adults. ⁴
	Among people with HIV, life-expectancy varies by geographic region. The lifespan of people with HIV has increased markedly over the last decade in the context of expanded access to antiretroviral therapy (ART) (7.8 million people with HIV accessing ART in 2010 vs. 28.7 million people living with HIV accessing ART in 2021). ^{4,6,7}
	Atherosclerotic cardiovascular disease risk increases with age. ⁸ The population-attributable fraction of atherosclerotic cardiovascular disease attributable to HIV has been steadily increasing in concert with the lifespan of the people with HIV globally. ³
Overall representativeness of this trial	REPRIEVE enrolled 7,769 participants from 12 countries: USA (N=3787), Canada (N=131), Spain (N=213), Brazil (N=1099), Peru (N=148), Haiti (N=140), Thailand (N=590), India (N=504), South Africa (N=570), Botswana (N=281), Uganda (N=181), and Zimbabwe (N=125).

REPRIEVE permitted enrollment of participants age 40 to 75 years. The median age of enrolled participants was 50 years (Q1 45 years, Q3 56 years).

Among all enrolled participants, 41% were Black or African American, 35% were White, 15% were Asian, and 9% were Other. Among the subset of participants enrolled in the US and Canada, and 18% were Hispanic or Latinx.

With respect to natal sex, 31% of REPRIEVE participants were female (see below for ascertainment). As per the table below, the enrollment of female participants in the US, Brazil, Thailand, South Africa, and Botswana approximated, paralleled, or exceeded the percent of female persons with HIV in each of these countries, while the enrollment of female participants in Canada, Spain, Peru, Haiti, India, Uganda, and Zimbabwe did not.

Country	Percentage of Females enrolled in REPRIEVE	Percentage of Females among population living with HIV in country
US	23	23 ⁹
Canada	10	29 ¹⁰
Spain	9	18 ¹¹
Brazil	29	34 ¹²
Peru	8	24 ¹¹
Haiti	42	57 ¹¹
Thailand	56	42 ¹¹
India	26	39 ¹³
South Africa	66	64 ¹¹
Botswana	63	61 ¹¹
Uganda	51	60 ¹¹
Zimbabwe	24	58 ¹¹

Data on gender identity or identities were collected through participant interviews. Research team members recorded all gender identifies endorsed by each participant. Options included: "male", "female", "transgender male", "transgender female", "gender queer", "gender variant", "gender nonconforming", and "self-identify", or an open-text field for identity not otherwise captured. Two additional reporting categories included "prefer not to answer" (to record participant opt-outs) and "information not collected" (to record lack of performance of participant interview on gender identities by research team). Overall, acceptance of

gathering gender identity was 96%. Among REPRIEVE participants, 1.6% identified across the transgender spectrum (2.2% of natal males, 0.3% of natal females).	
---	--

References

- Managing Blood Cholesterol in Adults. National Heart, Lung, and Blood Institute, 2013. (<u>https://www.nhlbi.nih.gov/health-topics/management-blood-cholesterol-in-adults</u>).
- Hicks KA, Tcheng JE, Bozkurt B, et al. 2014 ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). J Am Coll Cardiol 2015;66(4):403-69. (In eng). DOI: 10.1016/j.jacc.2014.12.018.
- Shah ASV, Stelzle D, Lee KK, et al. Global Burden of Atherosclerotic Cardiovascular Disease in People Living With HIV: Systematic Review and Meta-Analysis. Circulation 2018;138(11):1100-1112. (In eng). DOI: 10.1161/circulationaha.117.033369.
- 4. Global HIV & AIDS statistics Fact sheet. (<u>https://www.unaids.org/en/resources/fact-sheet</u>).
- 5. HIV Statistics Impact on Racial and Ethnic Minorities. 01-20-2023 (<u>https://www.hiv.gov/hiv-basics/overview/data-and-trends/impact-on-racial-and-ethnic-minorities/</u>).
- Trickey A, Sabin CA, Burkholder G, et al. Life expectancy after 2015 of adults with HIV on long-term antiretroviral therapy in Europe and North America: a collaborative analysis of cohort studies. Lancet HIV 2023;10(5):e295-e307. (In eng). DOI: 10.1016/s2352-3018(23)00028-0.
- Johnson LF, Mossong J, Dorrington RE, et al. Life expectancies of South African adults starting antiretroviral treatment: collaborative analysis of cohort studies. PLoS Med 2013;10(4):e1001418. (In eng). DOI: 10.1371/journal.pmed.1001418.
- Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023;147(8):e93-e621. (In eng). DOI: 10.1161/cir.00000000001123.
- 9. UNAIDS Data 2021. Geneva: Joint United Nations Programme on HIV/AIDS, 2021.
- Haddad N, Robert A, Weeks A, Popovic N, Siu W, Archibald C. HIV in Canada-Surveillance Report,
 2018. Can Commun Dis Rep 2019;45(12):304-312. (In eng). DOI: 10.14745/ccdr.v45i12a01.
- 11. UNAIDS Data 2022. Geneva: Joint United Nations Programme on HIV/AIDS, 2022.

- 12. AIDSinfo: Global data on HIV epidemiology and responses. UNAIDS; 2022.
- 13. HIV/AIDS in India. 07-10-2021 (Feature Story) (https://www.worldbank.org/en/news/feature/2012/07/10/hiv-aids-india).