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Effects of clinical, comorbid, and social determinants of 
health on brain ageing in people with and without HIV: 
a retrospective case-control study
Kalen J Petersen, Tina Lu, Julie Wisch, June Roman, Nicholas Metcalf, Sarah A Cooley, Ganesh M Babulal, Rob Paul, Aristeidis Sotiras, Florin Vaida, 
Beau M Ances

Summary
Background Neuroimaging reveals structural brain changes linked with HIV infection and related neurocognitive 
disorders; however, group-level comparisons between people with HIV and people without HIV do not account for 
within-group heterogeneity. The aim of this study was to quantify the effects of comorbidities such as cardiovascular 
disease and adverse social determinants of health on brain ageing in people with HIV and people without HIV.

Methods In this retrospective case-control study, people with HIV from Washington University in St Louis, MO, USA, 
and people without HIV identified through community organisations or the Research Participant Registry were 
clinically characterised and underwent 3-Tesla T1-weighted MRI between Dec 3, 2008, and Oct 4, 2022. Exclusion 
criteria were established by a combination of self-reports and medical records. DeepBrainNet, a publicly available 
machine learning algorithm, was applied to estimate brain-predicted age from MRI for people with HIV and people 
without HIV. The brain-age gap, defined as the difference between brain-predicted age and true chronological age, 
was modelled as a function of clinical, comorbid, and social factors by use of linear regression. Variables were first 
examined singly for associations with brain-age gap, then combined into multivariate models with best-subsets 
variable selection.

Findings In people with HIV (mean age 44·8 years [SD 15·5]; 78% [296 of 379] male; 69% [260] Black; 78% [295] 
undetectable viral load), brain-age gap was associated with Framingham cardiovascular risk score (p=0·0034), 
detectable viral load (>50 copies per mL; p=0·0023), and hepatitis C co-infection (p=0·0065). After variable selection, 
the final model for people with HIV retained Framingham score, hepatitis C, and added unemployment (p=0·0015). 
Educational achievement assayed by reading proficiency was linked with reduced brain-age gap (p=0·016) for people 
without HIV but not for people with HIV, indicating a potential resilience factor. When people with HIV and people 
without HIV were modelled jointly, selection resulted in a model containing cardiovascular risk (p=0·0039), hepatitis C 
(p=0·037), Area Deprivation Index (p=0·033), and unemployment (p=0·00010). Male sex (p=0·078) and alcohol use 
history (p=0·090) were also included in the model but were not individually significant.

Interpretation Our findings indicate that comorbid and social determinants of health are associated with brain ageing 
in people with HIV, alongside traditional HIV metrics such as viral load and CD4 cell count, suggesting the need for 
a broadened clinical perspective on healthy ageing with HIV, with additional focus on comorbidities, lifestyle changes, 
and social factors.

Funding National Institute of Mental Health, National Institute of Nursing Research, and National Institute of Drug 
Abuse.

Copyright © 2023 Published by Elsevier Ltd. All rights reserved.

Introduction
People ageing with HIV exhibit altered brain structure 
and function compared with those without HIV, 
including morphological changes detectable on MRI.1–3 
However, group-level differences conceal substantial 
within-group heterogeneity. Although dementia is 
increasingly rare because of combination antiretroviral 
therapy (ART), more subtle forms of cognitive 
impairment persist in a subset of people with HIV, in 
some instances diminishing quality of life.4

To account for variability in ageing, new models must 
consider a broader range of health drivers than previous 

models, which focused mainly on clinical HIV metrics 
such as viral load. Growing literature quantifies the effect 
of comorbid disease burden and social determinants of 
health such as poverty, stress, and social stigma.5,6 
However, relationships between such risk or resilience 
factors and MRI biomarkers are poorly understood. To 
address this gap, innovative methods are needed.

Machine learning algorithms can provide unexpected 
insights into latent patterns in large clinical and 
neuroimaging datasets, including in people with HIV.7,8 
One of the most fruitful lines of research has involved 
brain-predicted age, in which models are trained to 
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estimate the age of individuals from neuroimaging 
features. The difference between brain-predicted age 
and true chronological age is known as the brain-
age gap.

Positive brain-age gap (ie, age overestimation) reflects 
the accumulation of pathology; for example, people with 
Alzheimer’s disease or mild cognitive impairment,9 
schizophrenia,10 and HIV11–13 have higher brain-age gap 
on average than controls. However, studies have largely 
focused on between-group differences rather than 
explaining within-group variability. Moreover, they have 
typically examined the effect of the primary disease 
rather than the effects of comorbidities and social 
factors. To meet these challenges, we used a large sample 
of people with HIV and people without HIV who 
underwent neuroimaging at a single site and whose 
clinical profiles and socioeconomic statuses are well 
characterised.

The aim of this study was to identify current and 
lifetime factors that explain brain ageing in people with 
HIV and people without HIV. These groups were first 
modelled separately, then a joint model was used to 
identify common factors affecting brain ageing across 
both populations. The two groups were not compared 
directly due to large differences in sample size and 
demographics. The outcome variable in all analyses was 

the brain-age gap, derived by applying a deep neural 
network to individual MRIs. The analysis consisted of 
two methods. First, potential correlates of brain ageing 
were examined singly, controlling for demographics, 
with correction for multiple comparisons. Then, 
multivariate models were built with variable selection.

Although our approach was data-driven, previous 
findings enabled us to hypothesise specific associations. 
We predicted that cardiovascular risk14 and detectable 
viral load11 would show positive associations with brain-
age gap in people with HIV. On the basis of known 
relationships between social determinants of health and 
mortality and morbidity in people with HIV, we predicted 
that greater neighbourhood socioeconomic deprivation15 
and early life stress16 would correspond to elevated 
brain-age gap. By contrast, because education is linked 
with better neuropsychological functioning in people 
with HIV,17 we predicted an inverse association between 
education achievement and brain-age gap.

Methods
Study design and population
In this retrospective case-control study, participants 
were drawn from several HIV studies done in a single 
laboratory for the primary purpose of examining the 
effects of HIV disease and prevalent health comorbidities 

Research in context

Evidence before this study
We searched PubMed on Aug 15, 2022 using the search terms 
(“HIV” or “human immunodeficiency virus”) and (“brain”, 
“neurological”, “neurocognitive”, or “HIV-associated 
neurocognitive disorder [HAND]”) in the title, and 
(“comorbidity” or “social determinants of health”) in the title 
or abstract, including spelling variants. We included original, 
peer-reviewed, clinical studies of adults with HIV published 
between  Jan 1, 1996 (combination antiretroviral therapy 
development) and Aug 15, 2022 (search date), in English. 
Initial results included 149 studies; two were excluded for 
paediatric populations, 11 used animal or in vitro methods, 
and 59 were reviews, meta-analyses, editorials, or case studies. 
The remaining 77 were published between 2006 and 2022. 
These studies collectively identified numerous risk factors for 
changes in brain structure and neurocognitive deficits in 
people with HIV in the following categories: HIV clinical 
measures (current or nadir CD4 cell counts, AIDS-defining 
events, frailty, and viral loads), comorbidities (alcoholism, 
other substance use, depression and anxiety, co-infection, 
cardiovascular disease, and metabolic syndrome), plasma 
biomarkers of inflammation (IL-6 and soluble CD14), 
antiretroviral toxicity (efavirenz and integrase inhibitors), 
genetics (haplogroups and single-nucleotide polymorphisms), 
and demographic or social determinants of health (age, 
education, employment, and race and ethnicity). Some factors 
(education, exercise, and mitochondrial haplogroup B) were 

protective against neurocognitive impairment. In general, 
studies were focused on single domains of risk; however, 
a minority of studies used machine learning approaches with 
multidomain inputs.

Added value of this study
This study expands upon existing knowledge in several key 
ways. First, rather than examining neurocognitive risk factors 
in isolation, we build cross-modal models that combine clinical, 
comorbid, and sociodemographic predictors of brain health. 
Second, these factors are examined in the context of one of 
the largest single-site neuroimaging datasets of people with 
HIV and people without HIV. Third, brain-predicted age 
is quantified with a deep learning method, which produces 
a highly repeatable, disease-sensitive measure of whole-brain 
structural integrity. Finally, we examine geospatial data (Area 
Deprivation Index), which have not previously been compared 
with brain-predicted age in the context of HIV.

Implications of all the available evidence
Our key findings indicate that brain ageing in people with HIV 
is best explained by a combination of clinical, social, and 
comorbid risk factors. Together with the reviewed literature, 
our findings suggest that clinical care for people with HIV 
should incorporate a broader view of neurological health, 
including management of cardiovascular disease and 
consideration of sociological factors such as environmental 
stressors, unemployment, and neighbourhood quality of life.
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on brain structure and function. Adults with HIV were 
recruited between Dec 3, 2008, and Oct 4, 2022, from 
the Washington University in St Louis Infectious 
Disease Clinic, and people without HIV were identified 
through community organisations or the Research 
Participant Registry in the same years. All participants 
provided written informed consent for study procedures, 
approved by the Institutional Review Board. All studies 
from which data were drawn were approved by the 
Washington University in St Louis Institutional Review 
Board.

Exclusion criteria were established by a combination of 
self-reports and medical records. Individuals who met the 
Diagnostic and Statistical Manual of Mental Disorders 
fifth edition criteria for current, severe substance use 
disorder or unmedicated major depressive disorder were 
excluded from parent protocols because of challenges 
with study compliance and the potential for confounding 
effects on neuroimaging. Individuals with depressive 
symptoms, anxiety, or mild-to-moderate substance use 
disorders were included to maximise external validity. 
Other exclusion criteria were incidental psychiatric 
disorders including schizophrenia and bipolar disorder, 
or neurological disorders such as epilepsy, traumatic 

brain injury with prolonged unconsciousness, or active 
opportunistic brain infections.

Procedures
For people with HIV, viral load was measured by RT-PCR 
with blood obtained on the day of imaging. Viral loads of 
more than 50 HIV copies per mL in plasma were 
considered detectable. CD4 cell counts were measured 
with flow cytometry, and nadir levels were taken from 
self-reports or medical records if available. Cardiovascular 
health was quantified with the 10-year Framingham 
score, which forecasts individual probability of 
developing cardiovascular disease,18 calculated from the 
following risk factors: age, sex, smoking, systolic blood 
pressure, high-density lipoprotein, total cholesterol, and 
blood pressure medications. Lifetime heaviest substance 
use was quantified with the Kreek-McHugh-Schluger-
Kellogg scale for alcohol, tobacco, and cocaine, which 
corresponds to clinical rating scales such as the 
Structured Clinical Interview for the Diagnostic and 
Statistical Manual of Mental Disorders (DSM). Heaviest 
use was assessed on a semiquantitative 13-point scale 
based on duration, frequency, and amount of 
consumption. Cannabis was not examined due to poor 
data availability. Hepatitis C co-infection was self-
reported.

Socioeconomic status was assayed using the Area 
Deprivation Index, which combines US census tract-
level housing, employment, education, and poverty 
data into a summary metric, with increasing scores 
indicating greater deprivation.19 Area Deprivation 
Indexes were obtained from geospatial coding of 
residential addresses. The 2015 Area Deprivation Index 
national ranking was used, as this was the nearest 
timepoint to the mean visit (June, 2014 [2·6 years]). 
Educational achievement was quantified by use of the 
Wide Range Achievement Test reading component; the 
reading is a better proxy for educational achievement 
than years of schooling, and attenuates apparent racial 
discrepancies in neurocognitive test performance, 
suggesting better sensitivity to socio economic effects.20 
Self-reported unemployed status including disability 
was recorded. Childhood and adolescent stress was 
measured with the Early Life Stress Questionnaire, 
summing total adverse events experienced by the age of 
17 years.

The MRI scan was done on two 3-Tesla Siemens 
(Erlangen, Germany) scanners (Prisma, Trio) and included 
T1-weighted magnetisation prepared rapid gradient echo 
(T1-MPRAGE) structural MRI (repetition time and echo 
time 2400/3·2 ms, spatial resolution 1 × 1 × 1 mm). 
Minimal pre-processing was applied, including skull-
stripping with the FMRIB Software Library Brain 
Extraction Tool, and linear registration to the 1-mm 
Montreal Neurological Institute template. To obtain brain 
structure volumes, FreeSurfer (version 5.3) was run, with 
manual inspection and correction.

People without 
HIV (N=259)

People with HIV 
(N=379)

p value

Age, years* 38·3 (17·1) 44·8 (15·5) <0·0001

Sex†

Male 129 (50%) 296 (78%) <0·0001

Female 130 (50%) 83 (22%) ··

Race† ·· ·· 0·0021

Black or African-American 146 (56%) 260 (69%) ··

White 104 (40%) 111 (29%) ··

Asian 7 (3%) 2 (1%) ··

American Indian or Native American 0 1 (<1%) ··

Multiracial 2 (1%) 4 (1%) ··

Other 0 1 (<1%) ··

Education, years* 14 (2) 13 (2) <0·0001

Unemployed (including disability)† 28 (11%) 102 (27%) <0·0001

10-year Framingham risk score* 12·7 (10·8) 17·1 (12·1) 0·0065

Alcohol use (KMSK total)* 6·0 (3·7) 6·9 (4·0) 0·015

Cocaine use (KMSK total)* 0·6 (2·2) 3·3 (5·3) <0·0001

Tobacco use (KMSK total)* 4·4 (4·8) 6·6 (4·9) <0·0001

Area Deprivation Index (percentile)* 63·8 (25·0) 73·4 (24·8) 0·0011

Early Life Stress total events* 3·1 (2·8) 3·9 (2·9) 0·0023

WRAT-III reading subtest* 47·1 (7·1) 43·0 (8·7) <0·0001

Viral load (copies per mL, log10) ·· 1·8 (1·1) ··

Undetectable viral load (≤50 copies per mL) ·· 295 (78%) ··

Most recent CD4 count (cells per µL) ·· 588(312) ··

Nadir CD4 count (cells per µL) ·· 224 (200) ··

Hepatitis C infection ·· 25 (7%) ··

Data are mean (SD) or n (%). KMSK=Kreek-McHugh-Schluger-Kellogg. WRAT=Wide Range Achievement Test. 
*Compared between groups with ANOVA. †Compared with  χ² tests.

Table: Participant characteristics

For more on FreeSurfer see 
surfer.nmr.mgh.harvard.edu

surfer.nmr.mgh.harvard.edu
surfer.nmr.mgh.harvard.edu
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Statistical analysis
DeepBrainNet, a publicly available brain-predicted age 
model, was trained on 11 729 MRI scans from a diverse 
cohort of normative controls (ages 3–95 years), from 
16 imaging databases including multiple scanners and 
sites.21 Model accuracy was tested on a previously unseen 
cohort of 2739 healthy controls. DeepBrainNet was built 
with the inception-resnet-v2 framework, which has high 
performance on complex computer vision challenges. 
DeepBrainNet uses two dimensional (2D) convolutional 
architecture, including a global maximum pooling layer, a 
dropout layer to prevent overfitting, and a fully connected 
1024-node layer. The network was implemented in 
TensorFlow and Keras with five-fold cross-validation. 
Networks were initialised on ImageNet, a dataset of over 
14 million hand-annotated images.

DeepBrainNet takes minimally processed T1-weighted 
scans as input, with brain extraction and linear registration 
but no segmentation or warping. Scans are represented as 
80 axial slices; to obtain the brain-predicted age, each slice 
was used as a separate input, and the median age estimate 
was taken. Brain-age gap was obtained by subtraction of 
chronological age from DeepBrainNet-predicted age; thus, 
a positive brain-age gap indicates model overestimation. To 
ensure that brain-age gap was not dependent on hardware, 
we tested for statistical differences between scanners.

Interpretation of spatial patterns detected by deep 
learning algorithms is non-trivial because of network 
complexity. To obtain a first-order approximation of 
volumetric features relevant to DeepBrainNet, we 
correlated normalised FreeSurfer grey and white matter 
volumes with brain-age gap. Correlation heatmaps for 
people with HIV and people without HIV were applied to 
a standard atlas for cortex (Desikan-Killiany), subcortical 
structures, white matter (including T1 hypointensities), 
and cerebrospinal fluid compartments.

Potential predictors of brain-age gap were transformed 
to mitigate skewness. CD4 cell count and Framingham 
score were square-root transformed, the Early Life 
Stress Questionnaire was log10-scaled, and Area 
Deprivation Index was logit transformed. Cocaine and 
tobacco use were binarised (user and never user); 
alcohol use (Kreek-McHugh-Schluger-Kellogg lifetime 
heaviest use) was continuous. As study participants 
were over 97% White or Black or African American, 
approximately consistent with demographics of people 
with HIV in the St Louis area, race was collapsed into 
a binary (Black and non-Black). Due to protocol 
differences between studies conducted over the 13-year 
timeframe, some missingness was present in the 
dataset. For a sensitivity analysis with complete 
observations and the use of least absolute shrinkage and 
selection operator (LASSO) as additional validation, 
please see the appendix (p 1).

All statistical analyses were done in R (version 4.1.3). To 
test whether brain-age gap was associated with clinical, 
comorbid, and social factors, we performed univariate 

testing for all predictors separately for people with HIV 
and people without HIV, controlling for age, sex, and 
race. 13 predictors were tested: viral load, current CD4 
cell count, nadir CD4 cell count, Framingham score, 
alcohol, tobacco, cocaine, hepatitis C, Area Deprivation 
Index, early life stress, Wide Range Achievement Test 
reading, years of education, and employment status. To 
mitigate false positives, multiple comparisons correction 
was done by use of Benjamini-Hochberg false discovery 
rate correction (α=5%).

To build multivariate models of brain ageing in people 
with HIV and people without HIV, we did multiple linear 
regression modelling with best-subsets variable selection 
using the Regsubsets R package. This method involved 
the fitting of one regression model per combinatorial 
subset of predictors. Variable selection was done by 
choosing the model with minimum Mallows’ Cp, which 
is a measure commonly used for selective modelling.22 
Multivariate modelling was done separately for people 
with HIV and people without HIV, and in the combined 
cohort, adding HIV serostatus as a predictor.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, writing and interpretation, 
or the decision to publish. See Online for appendix

Figure 1: Spatial correlation map of brain-age gap and volumetric features
To estimate the importance of volumetric features in the derivation of the brain-age gap by the convolutional 
neural network DeepBrainNet, correlations between brain-age gap and FreeSurfer volumes were calculated for 
people with HIV (A, B) and people without HIV (C, D). All significant positive correlations (blue) were for ventricular 
cerebrospinal fluid compartments and for T1 white matter hypointensities (not shown), whereas the strongest 
negative correlations were subcortical in the hippocampus (bilateral), amygdala (bilateral), brainstem, and corpus 
callosum.
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Results
People with HIV were older and more likely to be male 
and Black than those without HIV (table). These core 
demographics were included as covariates in all 
analyses.

In people with HIV, 10-year Framingham scores, and 
lifetime alcohol, cocaine, and tobacco use were greater 
than in people without HIV (table). People with HIV 
lived in neighbourhoods with greater socioeconomic 
disadvantage as measured by the Area Deprivation Index, 
experienced more early life stressors, and had lower 
educational achievement on the Wide Range 
Achievement Test reading subtest. For people with HIV, 
mean viral load was 63·1 copies per mL, and mean CD4 
T-cell counts were 588·0 cells per µL, with a mean nadir 
of 224·3 cells per µL. Of 379 people with HIV, 25 reported 
a history of hepatitis C.

DeepBrainNet predicted participant age from 
T1-weighted images with a mean absolute error of 

5·7 years (5·5 years for people without HIV; 5·8 years for 
people with HIV). After linear bias correction 
(ie, regression of chronological age from the brain-age 
gap), mean absolute error was reduced to 5·3 years. Brain-
age gap was not different between T1-weighted images 
from Prisma and Trio scanners (p=0·20). Regardless of 
serostatus, all significant associations in spatial heatmaps 
(figure 1) for grey and white matter regions were negative 
(ie, greater brain-age gap correlated with smaller volume), 
whereas significant positive associations (greater brain-age 
gap with larger volumes) were limited to CSF 
compartments (lateral ventricles—eg, r=0·15–0·52) and 
T1 white matter hypointensities (r=0·36 for people with 
HIV; r=0·12 for people without HIV).

Among HIV-specific variables (figure 2; appendix p 4), 
detectable viral load (p=0·0023) and hepatitis C 
co-infection (p=0·0065) were significantly positively 
associated with brain-age gap. CD4 cell count was 
negatively associated (p=0·025) but fell short of 
significance after false discovery rate adjustment. Other 
predictors were examined in both serostatus groups 
(figure 3). Framingham score, quantifying cardiovascular 
risk, was significantly positively associated with brain-
age gap in people with HIV (p=0·0034) but not people 
without HIV (p=0·097), although the direction of effect 
was the same. Educational achievement (Wide Range 
Achievement Test reading; p=0·016) and educational 
duration (p=0·033) were negatively associated with 
brain-age gap, indicating potential predictors of 
resilience, but these did not survive false discovery rate 
correction. Unemployed status was associated with 
greater brain-age gap only in people with HIV (p=0·0019).

To create multivariate brain-age gap models for people 
with HIV and people without HIV, regression with 
best-subsets selection was used. The best model for  
people with HIV (figure 4) included Framingham score 
(p=0·0019; β=1·43), hepatitis C (p=0·073; β=3·90), and 
unemployment (p=0·020; β=3·21). The best model for 
people without HIV (figure 4) included alcohol use 
(p=0·0041; β=0·40), early life stress (p=0·047; β=–3·27) 
and Wide Range Achievement Test reading (p<0·0001; 
β=–0·304), with a non-significant term for unemployment 
(p=0·79; β=0·327). Finally, the best model for the 
combined cohort (people with HIV and people without 
HIV; figure 5) included Framingham score (p=0·0039; 
β=1·06), hepatitis C (p=0·037; β=3·84), Area Deprivation 
Index (p=0·033; β=0·684), and un employment 
(p=0·00010), with retained non-significant terms for male 
sex (p=0·078; β=2·11) and alcohol use (p=0·090; 
β=0·224).

Sensitivity analysis with the complete-observation subset, 
with best-subsets selection and LASSO regression, yielded 
consistent findings and is discussed in the appendix (p 2). 
In five-fold cross-validation, the best-subsets model 
predicted brain-age gap for people in the complete-
observations subset with a root-mean-square error of 
6·72 years and a Pearson’s r=0·44.

Figure 2: HIV-specific predictors of brain ageing
Univariate associations between potential predictors of brain ageing and DeepBrainNet-derived brain-age gap 
(ie, the difference between model-estimated age and chronological age). Four factors were considered only in 
people with HIV: plasma HIV viral load (A), hepatitis C co-infection (B), current plasma CD4 cell counts (C), and 
lifetime nadir CD4 cell count (D). *Significant at p<0·05 after false discovery rate correction. †Significant at 
precorrected p<0·05.
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Discussion
By use of neuroimaging, machine learning, and model 
selection, we have shown that a combination of clinical 
measures, comorbidities, and social determinants of 
health are associated with brain-predicted age in people 

with HIV and people without HIV. Cardiovascular 
disease burden, detectable HIV viral load, and hepatitis 
C co-infection were identified as the strongest 
univariate correlates of brain-age gap in people with 
HIV. Additionally, the effects of social factors such as 

Figure 3: Predictors of brain ageing for people with and without HIV
Univariate associations between potential predictors of brain ageing and DeepBrainNet-derived brain-age gap. Nine factors were examined for both people with and 
without HIV: Area Deprivation Index (A), early life stressors (B), educational achievement (C), educational duration (D), Framingham cardiovascular risk (E), 
alcohol (F), cocaine (G), tobacco (H), and employment status (I). KMSK=Kreek-McHugh-Schluger-Kellogg. WRAT-III=Wide Range Achievement Test. *p<0·05. 
†Significant at p<0·05 after false discovery rate correction.
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unemployment and area socioeconomic deprivation 
were identified in multivariate regression. Differences 
in significant variables between univariate and 
multivariate analyses could have several causes. For 
example, two predictors with high colinearity, 
accounting for shared variance in the response variable, 
could both show significant effects on brain-age gap in 
independent univariate tests, but not in a multivariate 
model.

Brain-age gap was also modelled in people without 
HIV. Because our primary goal was to explain within-
group variability in brain ageing rather than test for 
between-group differences, and due to sample size 
and demographic differences, we elected not to do 
head-to-head comparisons between HIV serostatus 
groups. Best-subsets selection produced a multivariate 
model for people without HIV that included significant 
terms for alcohol use, early life stress, and Wide Range 

Figure 4: Multivariate prediction of brain-age gap in people with and without HIV
To identify predictor subsets that best explain the variability in the brain-age gap for people with HIV (A, B) and people without HIV (C, D), best-subsets variable 
selection was done with Mallows’ Cp as selection criterion. Left panels (A, C) display the best result (lowest Cp) for each number of predictors; shaded panels indicate 
that the predictor in that column was included. The selected model (highlighted row) for people with HIV included Framingham cardiovascular risk, hepatitis C, and 
unemployed status. The model for people without HIV included alcohol use, early life stress, Wide Range Achievement Test reading score, and unemployed status. 
*Right panels (B, D) show model fit across the number of predictors, in which the minimum Cp is obtained with three predictors for people with HIV and four 
predictors for people without HIV. WRAT-III=Wide Range Achievement Test.
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Achievement Test reading subscale. The Wide 
Range Achivement Test showed a significant inverse 
relationship with brain-age gap, indicating that 
educational achievement might be a resilience factor for 
brain ageing. Finally, modelling people with HIV and 
people without HIV together implicated Framingham 
score, alcohol use, Area Deprivation Index, unemployment, 
male sex, and hepatitis C with older-appearing brain 
phenotypes. Notably, HIV itself was not significantly 
associated with brain-age gap when modelling these 
other factors, suggesting the relative importance of non-
HIV drivers of brain ageing in the combination ART era.

Substantial evidence now implicates non-HIV risk and 
resilience factors in ageing effects for people with HIV.23,24 
Health disparities between people with HIV and people 
without HIV partly reflect the legacy of early uncontrolled 
infection, but these residual effects alone are insufficient 
to explain the persistence of neurocognitive impairment 
among people with well controlled HIV.25 As a result, 
comorbidities and social determinants of health are 
increasingly salient features in people with HIV with 
suppressed viral loads, immune reconstitution, and the 
expectation of longevity.

People with HIV have increased average brain-age gap 
relative to seronegative peers; however, available data 
indicate that within-group variability in brain ageing 
exceeds between-group differences, and accounting for 
heterogeneity is crucial.12,14 In this study, we approach the 
question of brain ageing using an array of multimodal 
predictors, including clinical measures, comorbid 
disease burden, and social determinants of health. A 

novel aspect of this study is the incorporation of 
geospatial data on neighbourhood characteristics into 
MRI data analysis.

The first group of factors that could affect brain 
ageing are direct effects of HIV. We examined four key 
variables: viral load, current CD4 lymphocytes, nadir 
CD4 count, and hepatitis C co-infection. Detectable 
viral load was significantly associated with elevated 
brain-age gap, consistent with a large literature 
implicating viral suppression and immune re-
constitution in preserved neurocognitive function.26 
Hepatitis C was associated with approximately 4 years 
of added brain-age gap in people with HIV, suggesting 
that the pathological effects of HIV and hepatitis C have 
additive effects on brain health.27 Thus, achieving 
control of both viruses is likely to be important for 
healthy brain ageing.

The strongest and most consistent brain-age gap 
association was with Framingham cardiovascular risk 
score. The modelled difference in brain-age gap between 
individuals at minimum (<2%) and maximum (>60%) 
cardiovascular risk in this study was over 10 years. In 
univariate modelling, this association was significant 
in people with HIV; however, the effect size was similar in 
people without HIV, marking cardiovascular disease as a 
good candidate for a general brain ageing risk factor. 
However, it remains especially relevant for people with 
HIV who have increased vascular disease compared 
with the general population.28 These findings suggest 
that maintenance of normal blood pressure and 
cholesterol could be crucial for people with HIV who 

Figure 5: Multivariate predictors of brain ageing in combined cohort of people with and without HIV
Best-subsets selection was also done to model the brain-age gap for people with HIV and without HIV. (A) Best result (lowest Cp) for each number of predictors; 
shaded purple panels indicate that the predictor in that column was included. The final model (top row) included male sex, Framingham risk score, lifetime alcohol 
use, hepatitis C, area deprivation index, and unemployment. (B) Model fit across the number of predictors, in which the minimum Cp is obtained with six predictors (*). 
WRAT-III=Wide Range Achievement Test.
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have established viral control but remain vulnerable to 
cardiovascular disease.

Substance use disorders are also more prevalent 
among people with HIV than among the general 
population, and the effects of a history of drug misuse 
must be considered when studying neurocognitive 
deficits.29 Previous work has linked drug use with brain 
structural and functional changes in people with HIV, 
but associations with brain-age gap have not been 
characterised. In multivariate analysis of people without 
HIV, we found a positive association between brain-age 
gap and alcohol use, potentially indicating that neurotoxic 
effects of heavy consumption influence MRI-based brain 
age. The absence of a similar effect in people with HIV 
could be a function of the colinearity between alcohol use 
and other factors (eg, cardiovascular disease) for which 
stronger links were found.

One unexpected finding was the detection of a 
protective effect of educational achievement in people 
without HIV alone, in contrast with years of formal 
education, which showed no significant association. 
The Wide Range Achievement Test reading score had a 
significant negative correlation with brain-age gap in 
multivariate analysis, such that for each point of 
improvement on the Wide Range Achievement Test, 
the mean brain-predicted age was reduced by 
0·45 years. The apparent absence of this effect in 
people with HIV is challenging to interpret but might 
indicate that the enhanced cognitive reserve conferred 
by quality of education might not be fully realised in 
people with HIV who experience clinical and social 
stressors related to lower rungs on the hierarchy of 
needs (ie, those related to safety, food security, or other 
basic needs).

Social determinants of health were given consideration 
in this study as economic instability and social 
marginalisation disproportionately affect people with 
HIV. In addition to education, we examined three major 
social factors: childhood stress, residential neighbour-
hood quality from geospatially derived Area Deprivation 
Index, and unemployment status. Although neither the 
Early Life Stress Questionnaire or Area Deprivation 
Index were associated with brain-age gap, Area 
Deprivation Index had positive associations with brain-
age gap in the combined cohort model. Finally, 
unemployment status showed a strong linkage with 
increased brain-age gap in people with HIV, although 
causality remains unclear because neurocognitive 
impairment associated with accelerated brain ageing 
might precede loss of employment.

Anatomically, the brain-age gap was interpreted by 
correlation with FreeSurfer volumes. Although this 
approach does not capture all the complex patterns 
identified by the neural network, it provides an 
approximation of relevant features. Results were 
congruent with literature on brain structure and ageing: 
positive associations with brain-age gap were confined to 

CSF compartments and T1 white matter hypointensities, 
whereas the strongest negative correlations were in 
subcortical structures that atrophy with age, particularly 
amygdala, hippocampus, and corpus callosum.30 These 
results suggest that DeepBrainNet identifies ageing-
relevant imaging features.

Some limitations should also be noted. The use of over 
10 years of participant data resulted in some differences 
in the measures collected, producing a degree of data 
incompleteness. To mitigate confounding effects of 
missing values, we did a sensitivity analysis in the subset 
of people with HIV with complete data. Results thus 
obtained closely matched those derived from the full 
dataset, indicating that missing data were unlikely to 
drive results.

Use of self-reported data is another limitation. For 
example, self-reported hepatitis C prevalence in people 
with HIV (7%) was lower than expected, suggesting 
unawareness of infection in some participants. However, 
despite likely underestimation of co-infection, we 
nonetheless detected a substantial effect on brain-age 
gap (4·0 years increase) in people with HIV with 
hepatitis C. Hepatitis C serostatus was not assessed in 
people without HIV. Additionally, our sample represented 
almost exclusively people who self-identified as Black or 
White, but not other racial or ethnic groups. Furthermore, 
people with HIV and people without HIV were 
significantly different on self-identified race, sex, and 
age, limiting the comparability of serostatus groups.

The use of best-subsets variable selection runs 
some risk of overfitting since all possible predictor 
combinations are modelled. This weakness is partly 
mitigated by use of Mallows’ Cp, a selection criterion, 
which penalises models with numerous predictors.22 For 
further validation, we also did variable selection with 
LASSO regression, an alternative method that uses 
coefficient shrinkage to eliminate weaker predictors. 
Again, results corresponded well to the main analysis, 
suggesting that findings are robust to overfitting and 
insensitive to methodology.

Taken together, these results paint a nuanced picture of 
ageing with HIV. Traditional clinical variables such as 
viral load and T-cell counts affect neuropathology; 
however, non-HIV drivers of health such as comorbid 
diseases and socioeconomic status are growing in 
importance. Together, such factors could account for 
heterogeneity in neurocognitive outcomes in older 
people with HIV and people without HIV. Identification 
of brain-ageing correlates could lead to a broadened 
perspective on health for people ageing with chronic 
infectious disease while navigating challenging and often 
adverse socioeconomic landscapes.
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