Correspondence

Infectious disease

Check for updates

Reply to 'Cognitive criteria in HIV: greater consensus is needed'

e thank Cysique and colleagues for their considered response to our Consensus Statement (Nightingale, S. et al. Cognitive impairment in people living with HIV: consensus recommendations for a new approach. *Nat. Rev. Neurol.* **19**, 424–433; 2023)¹, and welcome discussion and debate on this important subject (Cysique, L. A. et al. Cognitive criteria in HIV: greater consensus is needed. *Nat. Rev. Neurol.* https://doi.org/10.1038/s41582-024-00927-1; 2024)².

First and foremost, we would like to reiterate that our approach does not seek to undermine the lived experience of people living with HIV who have, or are at risk of, cognitive impairment. Rather we feel these individuals would be best served by criteria that accurately delineate the underlying mechanisms and provide clear prognostic information.

Existing criteria for HIV-associated neurocognitive disorder (HAND)³ can lead to ambiguity. Cysique and colleagues state that HAND is caused by HIV, but is also multifactorial². Our approach seeks to address this ambiguity by conceptually separating 'HIV-associated brain injury (HABI)', caused directly by HIV. from 'cognitive impairment in people living with HIV', which can have several causes including HABI¹. We believe this delineation is vital in an era in which effective HIV treatment is widespread and mixed pathology is common. The authors interpretation of our approach as a strict dichotomy between HIV-related and other causes² does not align with our position; indeed, we seek to emphasize the complexity of overlapping mechanisms¹.

Cysique and colleagues point out that distinguishing active from legacy HABI might be difficult, and that the two could coexist². Although potentially true in some cases, failure to distinguish individuals with an active process caused by HIV from those with static damage or comorbidities might be the reason that clinical trials for cognitive impairment continue to be negative^{4,5}. Furthermore, we agree that a reliance on viral suppression could miss pathology and for this reason proposed that treatment studies target a subgroup with active HABI despite viral suppression in blood and cerebrospinal fluid¹. Studies of this group are crucial in a world in which viral suppression is increasingly the norm, while acknowledging that cognitive impairment from other causes is no less debilitating.

The advanced neuroimaging techniques mentioned by Cysique and colleagues² are undoubtably useful and we agree that their use in classifying brain injury in people living with HIV should be further explored. However, these techniques are not universally available and are not required for the diagnosis of clinically apparent disease; as such, we argue that they should not form an essential component of criteria designed to be applicable across diverse global settings.

Cysique and colleagues² raise concern that a wealth of historic data could be lost if existing criteria for HAND³ are abandoned. We would like to reassure the authors that our category of 'low cognitive performance' is aligned with HAND, enabling direct comparisons going forward. Our proposed changes pertain mainly to the labels applied, distinguishing research classifications from clinical disease burden and separating the underlying mechanisms. Through clinically meaningful definitions with destigmatized terminology, we aim to improve care for people living with HIV.

We look forward to engaging further with the field to gain broader consensus on this important topic and are grateful for Cysique and colleagues' contribution towards that discussion.

Sam Nightingale ¹^[1], Paola Cinque², Ameet Dravid³, Anna J. Dreyer¹, Magnus Gisslén^{4,5}, John A. Joska¹, Judith Kwasa⁶, Ana-Claire Meyer⁷, Nombeko Mpongo⁸, Noeline Nakasujja⁹, Roger Pebody¹⁰, Anton Pozniak^{11,12}, Richard W. Price ¹³, Deanna Saylor¹⁴, Kevin G. F. Thomas¹⁵, Jonathan Underwood^{16,17}, Jaime H. Vera¹⁸ & Alan Winston ^{19,20}

¹HIV Mental Health Research Unit, Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa. ²Unit of Infectious Diseases, San Raffaele Institute, Milan, Italy. ³Department of Medicine, Poona Hospital and Research Centre and Noble Hospital, Pune, India. ⁴Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. 5Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden. ⁶Department of Clinical Medicine and Therapeutics, Faculty of Health Science, University of Nairobi, Nairobi, Kenya. ⁷Department of Neurology, Johns Hopkins University, Baltimore, MD, USA. 8Desmond Tutu HIV Centre, Cape Town, South Africa. ⁹Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda. ¹⁰NAM, London, UK. ¹¹Department of HIV Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK. ¹²Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK. ¹³Department of Neurology, University of California San Francisco, San Francisco, CA, USA. ¹⁴University Teaching Hospital, Lusaka, Zambia, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ¹⁵Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa.¹⁶Division of Infection and Immunity, Cardiff University, Cardiff, UK. ¹⁷Department of Infectious Diseases, Cardiff and Vale University Health Board, Cardiff, UK. ¹⁸Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK. ¹⁹Department of Infectious Disease, Imperial College London, London, UK.²⁰HIV Clinical Trials, Winston Churchill Wing, St Mary's Hospital, London, UK. e-mail: sam.nightingale@uct.ac.za

Published online: 16 January 2024

Correspondence

References

- Nightingale, S. et al. Cognitive impairment in people living with HIV: consensus recommendations for a new approach. *Nat. Rev. Neurol.* **19**, 424–433 (2023).
- Cysique, L. A. et al. Cognitive criteria in HIV: greater consensus is needed. Nat. Rev. Neurol. https:// doi.org/10.1038/s41582-024-00927-1 (2024).
- Antinori, A. et al. Updated research nosology for HIV-associated neurocognitive disorders. *Neurology* 69, 1789–1799 (2007).
- Letendre, S. L. et al. Antiretroviral therapy intensification for neurocognitive impairment in human immunodeficiency virus. Clin. Infect. Dis. 77, 866–874 (2023).
- 5. Shikuma, C. M. et al. Impact of antiretroviral therapy intensification with C-C motif chemokine receptor 5

antagonist maraviroc on HIV-associated neurocognitive impairment. *AIDS* **37**, 1987–1995 (2023).

Competing interests

The authors declare no competing interests.