Bardoxolone Methyl Improves Renal Function in Patients with Chronic Kidney Disease and Type 2 Diabetes Mellitus

Sherwyn Schwartz, M.D., Douglas Denham, D.O., Craig Hurwitz, M.D., Colin Meyer, M.D., Pablo Pergola, M.D., Ph.D.

Disclosure

Within the past 12 months, Dr. Schwartz has received support from the following companies:

- Speaker's Bureau: Eli Lilly
- Consultant: Biovail, Schering Plough, Eli Lilly and Reata Pharmaceuticals, Inc.

Hyperglyemia increases reactive oxygen species (ROS)

- Hyperglycemia activates pathways that increase ROS
- ROS have been implicated in AGE formation, the Polyol Pathway, and others¹

ROS stimulate inflammatory promoters responsible for renal injury

- ROS activate NF- κ B, TGF- β , and STAT3
- These pathways are present in renal tissue and activation results in:¹⁻²
 - Mesangial cells: contraction, proliferation, inflammatory cell recruitment, ECM-synthesis, and GBM thickening
 - Glomerular endothelial cells: NO depletion and endothelial dysfunction
 - Podocyte and proximal tubule cell injury
- ROS activation correlates with reduced renal function in patients^{1,3-4}

¹ Mezzano et al., Nephrol Dial Transplant (2004)

² Schmid et al., Diabetes (2006)

³ Berthier et al., Diabetes (2009)

⁴ Arakawa et al., Nephrol Dial Transplant (2008)

Induction of Nrf2 decreases ROS and subsequent renal inflammation and injury

• Inducing transcription factor Nrf2:

- Activates the Phase 2 response and production of over 250 antioxidant and detoxification enzymes
- Suppresses ROS formation and ROS-driven inflammation¹⁻²
- Bardoxolone methyl (BARD) is the most potent known inducer of Nrf2³
 - Functionally analogous to the endogenous metabolite of PGD2, 15d-PGJ2
 - Previously shown to improve serum creatinine and eGFR in two Phase 1 studies in oncology patients

¹ Kensler et al., Annu Rev Pharmacol Toxicol (2007)

² Thimmulappa et al., Biochem Biophys Res Commun (2006)

³ Dinkova-Kostova et al., PNAS (2005)

Design: Phase 2a study in type 2 diabetics with chronic kidney disease (CKD)

• Entry Criteria:

- Serum creatinine: 1.5 to 3.0 mg/dl (males) or 1.3 to 3.0 mg/dl (females)
- Receiving standard of care for diabetes, CKD, CVD
- Stable doses of medication for hypertension and diabetes required for 6 and 12 weeks, respectively, prior to enrollment

Treatment:

- Bardoxolone administered orally, once daily for 28 days
- 60 patients randomized
 - 20 patients to each of three dose levels: 25mg, 75mg, and 150mg

Study Endpoints and Other Selected Parameters			
Primary Efficacy Endpoint	Estimated GFR (eGFR; 4-variable MDRD equation)		
Chronic Kidney Disease	Serum Creatinine, Creatinine Clearance, Cystatin C, Phosphorus, Uric Acid, Angiotensin II		
Endothelial Dysfunction/ Cardiovascular	Circulating Endothelial Cells		
Glycemic Control/Diabetes	Hgb A1c, GDR/Euglycemic Clamp, Fasting Plasma Glucose		

Patient Demographics

Baseline Demographics (ITT n=60)				
Mean age, years (range)	62 (37 – 78)			
Sex, male	63%			
Ethnicity				
Caucasian	35%			
Hispanic	57%			
African-American	8%			
Mean Diabetes Duration, years	19			
Neuropathy and/or Retinopathy	70%			
Hypertension	98%			
Mean Hemoglobin A1c	7.6%			
Mean Baseline eGFR (ml/min/1.73m²)	35.6			

Concomitant Medications

Concomitant Medications (ITT n=60)					
Diabetic medications usage					
Biguanides	3%				
Sulfonylureas	25%				
GLP-1 analogues	3%				
DPP-IV inhibitors	3%				
PPAR-γ agonists	15%				
Insulin Alone	62%				
Insulin and/or other diabetes meds	90%				
ACE-inhibitors or ARB usage					
ACE-inhibitors	40%				
ARBs	42%				
ACE-inhibitor and/or ARB	70%				
Calcium Channel Blockers	37%				
Statins	83%				

Primary endpoint eGFR significantly increases with BARD treatment

- eGFR per MDRD significantly, dose-dependently increased
- 27-29% increase at mid and high dose levels
- 88% response rate
- No weight changes were observed

Change in eGFR

Improvements in other markers of renal function consistent with eGFR

BUN

Improvements in other markers of renal function consistent with eGFR

Creatinine Clearance

Cystatin C

Improvements in renally-excreted uric acid and phosphorus also observed

 Phosphorus and uric acid, uremic solutes typically elevated in patients with CKD, both significantly reduced

Serum Uric Acid

Serum Phosphorus

patients with baseline ≥ 4.5 mg/dl

†p<0.05; *p<0.01; **p<0.001; ***p<0.0001

Urinalysis findings

- No changes in markers of injury, NGAL and NAG
- Unable to make reliable inference of treatment effect on ACR
 - Increases prior to dosing with large standard deviations
 - No dose relationship; linear trend contrast p-value equaled 0.99
 - May have been due to in-patient study procedures

Changes in Albumin-to-Creatinine Ratio							
	Pre-treatment		Post-treatment	Change			
	Day -13	Day -2 or -1	Day 27 or 28	Day -2 to 27			
25mg	696.47	830.26	1289.26	421.96			
(n=15)	±839.1	±830.26	±1058.94	±401.68			
75mg	1074.09	1218.24	1585.02	326.14			
(n=18)	±1839.05	±2012.1	±2414.56	±556.5			
150 mg	1368.13	1404.98	1939.85	406.57			
(n=16)	±2019.24	±2031.51	±2546.67	±796.39			

Stage 4 patients experienced greater improvements on BARD

- 42% of ITT patients had at least one screening or baseline value for eGFR falling below 30 ml/min/1.73m²
- 91% response rate
- eGFR increase of approximately 7 ml/min/1.73m² in all Stage 4 patients

†p<0.05; ***p<0.0001

Stage 4 patients experienced greater improvements on BARD

Improvements also seen in CV markers

CECs

Angiotensin II

Adiponectin

150 mg

28.6

Safety

- Generally low frequency of AEs regardless of relationship to BARD
 - Mostly mild severity and consistent with standard symptoms in patients with history of diabetes and chronic kidney disease
 - No apparent dose relationships were observed
 - Occurring in ≥ 10% patients: headache, muscle spasms, dizziness, diarrhea, constipation, and nausea
 - Hypoglycemia detected chemically, but no patients reported hypoglycemic symptoms
- 8 Adverse Events (AEs) attributed to BARD
 - 4/60 (4.6%) patients experienced AEs assessed as possibly or probably related: mild muscle spasms (1), moderate decreased appetite (1), severe increased ALT (1), severe increased AST (1), severe increased ALP (1), and mild hypoglycemia (asymptomatic) (3)
- SAEs: Total of 6, none considered related to study drug:
 - Gastritis/esophagitis, Cellulitis of diabetic foot ulcer, Pancreatitis, Gout, Acute coronary syndrome/Contrast-induced acute renal failure, Acute chest pain

Summary and Conclusions

- This Phase 2 study indicates a beneficial effect of BARD on renal function.
 - BARD significantly improved renal function, as measured by MDRD eGFR
 - Consistent improvements in creatinine clearance, cystatin C, BUN, uric acid, and phosphorus
 - Effects were more pronounced in patients with more severe kidney impairment.
 - Effect on protein excretion are unclear and will need further study.
 - CV markers (CECs, AII and adiponectin) improved as well.
- BARD was well tolerated.
- Further studies that are placebo-controlled and of longer duration are warranted to further profile these effects.
- A 12-month Phase 2b study is underway.

Acknowledgements

Thanks to our patients!

Cetero Research

Dr. Pergola's Research Team

The Sponsor

