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Objective: The objective of this study is to determine whether adipose tissue functions
as a reservoir for HIV-1.

Design: We examined memory CD4þ T cells and HIV DNA in adipose tissue–stromal
vascular fraction (AT-SVF) of five patients [four antiretroviral therapy (ART)-treated and one
untreated]. To determine whether adipocytes stimulate CD4þ T cells and regulate HIV
production, primary human adipose cells were cocultured with HIV-infected CD4þ T cells.

Methods: AT-SVF T cells were studied by flow cytometry, and AT-SVF HIV DNA (Gag
and Env) was examined by nested PCR and sequence analyses. CD4þ T-cell activation
and HIV production were measured by flow cytometry and ELISA.

Results: AT-SVF CD3þ T cells were activated (>60% CD69þ) memory CD4þ and CD8þ

T cells in uninfected and HIV-infected persons, but the AT-SVF CD4þ/CD8þ ratio was lower
in HIV patients. HIV DNA (Gag and Env) was detected in AT-SVF of all five patients examined
by nested PCR, comparably to other tissues [peripheral blood mononuclear cell (PBMC),
lymph node or thymus]. In coculture experiments, adipocytes increased CD4þ T-cell
activation and HIV production approximately two to three-fold in synergy with gamma-
chain cytokines interleukin (IL)-2, IL7 or IL15. These effects were mitigated by neutralizing
antibodies against IL6 and integrin-a1b1. Adipocytes also enhanced T-cell viability.

Conclusion: Adipose tissues of ART-treated patients harbour activated memory CD4þ

T cells and HIV DNA. Adipocytes promote CD4þ T-cell activation and HIV production
in concert with intrinsic adipose factors. Adipose tissue may be an important reservoir
for HIV. Copyright � 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
Eradication of HIV is challenging because the virus
persists in cellular and anatomic reservoirs despite
antiretroviral therapy (ART) [1]. Primary cellular
reservoirs include memory CD4þ T cells and macro-
phages; despite their low frequency (�1 per million),
latently infected CD4þ T cells are the primary source of
viral rebound in patients whose ART is interrupted [2].
Physiological induction of latent HIV in CD4þ T cells
occurs via activation of CD3þ/T-cell receptor (TCR)
cytokines [interleukin (IL)-2, IL7, IL15, IL6 and tumour
necrosis factor-alpha (TNFa)], Toll-like receptor (TLR)
ligands or free fatty acids [3]. Major tissue reservoirs
include lymphoid tissue (lymph nodes, spleen, thymus
and bone marrow), gut-associated lymphoid tissue
(GALT) and the central nervous system.

Adipose tissue is a major endocrine organ with diverse
functions and cellular composition. It is present mainly
under the skin (subcutaneous adipose tissue) and around
thoracoabdominal organs (visceral adipose tissue). The
immune system is intimately associated with adipose
tissue; every lymph node is encapsulated by adipose tissue,
and adipocytes are abundant within bone marrow and in
ageing thymus gland [4–6]. Adipose tissue is composed of
mature adipocytes and the stromal-vascular fraction (SVF)
that includes preadipocytes, mesenchymal stem cells,
fibroblasts, endothelial cells and immune cells. Every type
of leukocyte is found in adipose tissue, and adipose-
resident CD4þ T cells resemble those in other tissues in
that they have an activated memory phenotype
(CD45ROþCD69þ) [7–9]. Stimuli for adipose CD4þ

T cells include cytokines (IL2, IL7, IL15, IL6, IL8 or
TNFa) or interactions with adipose macrophages,
dendritic cells or adipocytes [10,11]. Chemokines and
receptors such as RANTES (regulated on activation,
normal T-cell expressed and secreted) or CXCR3
(chemokine (C-X-C motif) receptor 3) are important
for T-cell migration into adipose tissue, although the
antigenic stimuli (microbial or lipids) and general
functions (proinflammatory vs. anti-inflammatory) are
still unclear [12,13]. Adipocytes themselves are unable to
support HIV infection [14], but adipose cells could
influence the pathogenesis of infected CD4þ T cells
within adipose depots. We hypothesized that adipose
tissue could be a reservoir for HIV, and that adipocytes
stimulate HIV production from CD4þ T cells.
Materials and methods

Isolation of adipose tissue stromal-vascular
fraction cells
Protocols were approved by the Baylor College of
Medicine Institutional Review Board. Solid adipose
tissue samples were procured from cadavers through
 Copyright © 2015 Wolters Kluwer H
National Disease Research Interchange (Philadelphia,
Pennsylvania, USA), or from live donors undergoing
elective surgical procedures with informed consent. For
isolation of AT-SVF cells, 1–2 g adipose tissue was
minced and digested with collagenase (Sigma, St Louis,
Missouri, USA), mesh-filtered and SVF cells pelleted
[15]. AT-SVF cells were centrifuged on Ficoll-Paque to
further increase lymphocyte yield (typically resulting in
�2–5� 105 cells per gram of adipose tissue).

Flow cytometry and nested PCR of adipose tissue
stromal-vascular fraction cells
For flow cytometry of AT-SVF T cells, isolated AT-SVF
cells were stained for CD3-Pacblue, CD4-PerCPCy5.5,
CD45RO-FITC and CD69-APC mAbs [Biolegend (San
Diego, California, USA) or BD Biosciences (San Jose,
California, USA)], and analysed with appropriate controls
using a Gallios Flow Cytometer (Beckman-Coulter,
Miami, Florida, USA). For nested PCRs, DNA was first
extracted from AT-SVF cells with QIAamp Microkit
(Qiagen, Valencia, USA) Nested PCR reactions were
performed by two rounds of 35–40 cycles using primers
spanning HIV LTR-Gag (RU5þSK39 outer and
US5þUS3 inner primers) [16], and Envelope C2V3C3
(PCR5þR344 outer and EN1þEN4B inner primers)
regions [17]. PCR products were gel-purified and
sequenced by the BCM DNA Sequencing Core.

In-vitro studies of memory CD4R T cells and
adipose cells
Human memory CD4þCD45ROþ T cells were purified
from peripheral blood mononuclear cells (PBMC) of
healthy donors via EasySep kits (Stemcell Technologies,
Vancouver, British Columbia, Canada). Primary pre-
adipocytes and adipocytes were obtained from Zen-Bio
(Research Triangle Park, North Carolina, USA).

For in-vitro infections, HIV viral stocks were generated
by the BCM/UTHSC-Houston CFAR Virology Core.
Most experiments first involved noninfection or infection
of memory CD4þ T cells with R5-tropic HIV strains at
0.01–0.1 MOI for 24 h in IL2 medium (complete RPMI
and 20 ng/ml IL2), washing, then coculture with adipose
cells and indicated agents.

For coculture of memory CD4þ T cells with adipose
cells, 2� 105 uninfected or infected memory CD4þ T
cells were seeded into transwells (0.4 mm pore) in six-well
plates with 2� 105 preadipocytes or adipocytes in lower
wells so that the cells did not touch. Cells were cocultured
for indicated periods with appropriate reagents (10–
20 ng/ml cytokines or 5–10 mg/ml blocking antibodies)
[R&D Systems (Minneapolis, Minnesota, USA) or
Biolegend]. Blocking mAbs included CD49a (clone
TS2/7), CD29 (clone TS2/16) and CD126 (clone UV4)
(Biolegend).
ealth, Inc. All rights reserved.
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T-cell activation and viability were measured by flow
cytometry staining for CD69 and CD25 (Biolegend), or
viability dye (Life Technologies). HIV production was
measured by flow cytometry staining for intracellular p24
(KC57-PE; Beckman-Coulter) with Cytofix/Cytoperm
solutions (BD Biosciences), and extracellular p24 by
ELISA (Advanced BioScience Laboratories, Rockville,
Maryland, USA). Extracellular IL6 in coculture exper-
iments was measured by ELISA (eBioscience. San Diego,
California, USA). and IL6 mRNA of fractionated human
adipose tissue was measured by real-time PCR.

For direct infection of AT-SVF cells isolated from adipose
tissues of healthy donors, cells were infected with HIV
(R5-tropic NSN-SX at 0.1 MOI) for 24 h, washed, then
cultured with or without 20 ng/ml IL2 or IL7 for up to 8
days. AT-SVF memory CD4þ T cells were stained by
flow cytometry, and HIV production measured by
p24 ELISA.

Statistics
Analyses were performed using SAS and Excel.
Differences were compared by paired or unpaired
Student’s t-test, and P values less than 0.05 were
considered significant.
Results

Detection of memory CD4R T cells and HIV
provirus in human adipose tissue
CD4þ T cells and macrophages reside in adipose tissue of
healthy humans in which they are activated, undergo
polarization and regulate adipose physiology and metab-
olism [8,9,11,18]. During HIV infection, infected CD4þ

T cells and monocytes could traffic into adipose tissue to
establish reservoirs [19,20]. To determine whether HIV
provirus is present in ATof patients, adipose tissue samples
(subcutaneous and visceral) were acquired from five
patients (three live donors undergoing surgery, and two
recently deceased patients), and from uninfected healthy
control donors. Four patients were ART-treated (three
with undetectable plasma viral load, Fig. 1a). AT-SVF
cells were examined by flow cytometry and HIV DNA
detected by nested PCR.

Memory CD4þ (CD3þCD4þCD45ROþ) and memory
CD8þ (CD3þCD4þCD45ROþ) T cells, as well as
CD69þ expression, were examined in peripheral blood
and AT-SVF of healthy control and HIV patients (gating
scheme in Fig. 1b). Within the CD3þT-cell population of
healthy controls, AT-SVF contained predominantly
memory CD4þCD45ROþ cells (63.1� 5.4%, n¼ 4),
whereas in peripheral blood, these comprised 39.9� 4.5%
of CD3þ T cells (P< 0.05, Fig. 1c), which were greater
than memory CD8þ proportions (15.4� 5.5% in AT-SVF
and 18.2� 2.7% in peripheral blood). However, the
 Copyright © 2015 Wolters Kluwe
distribution of CD4þ to CD8þ T cells was reversed in
AT-SVF of HIV patients (reduced CD4þCD45ROþ cells
to 34.9� 7.9%, and CD4þCD45ROþ cells increased to
46.0� 8.3%, P< 0.05 compared with healthy control
AT-SVF). AT-SVF memory T cells CD69 expression were
61–72% in healthy control AT-SVF and 60–67% in HIV
patient AT-SVF (Fig. 1d), similar to CD69þ expression
levels in lymphoid and intestinal tissues [7].

HIV DNA in AT-SVF cells was determined by nested
PCR using primers targeting LTR-Gag and Envelope.
About 1–2� 105 cell equivalents of DNA was used per
reaction, and sensitivity determined using ACH2:PBMC
ratios with detection limits of nearly one HIV copy per
1� 105 uninfected PBMC (data not shown). HIV DNA
was detectable in AT-SVF cells from different adipose
depots (visceral, subcutaneous or deep neck) of all five
HIV patients with both primer sets (Fig. 1e), and
detection frequencies were comparable to those in
PBMCs or memory CD4þ T cells (purified from
peripheral blood), thymus or mesenteric lymph nodes.
The second round PCR products were gel-purified and
sequenced to assess HIV diversity, but phylogenetic
analyses of Gag and Env sequences indicated no
significant intrapatient differences among different tissues
(data not shown). Thus, adipose tissue of HIV patients on
ART harbours HIV, but the source of the virus (CD4þ T
cells or macrophages) remains to be determined.

Enhancement of T cell activation, HIV
production and viability by adipocytes
To determine whether adipose cells (preadipocytes or
adipocytes) affect HIV replication, primary adipose cells
were cocultured with infected memory CD4þ T cells in
transwell dishes (purified from healthy donor blood and
infected in vitro prior to coculture). T-cell activation
(CD69þ expression) and HIV production (intracellular or
extracellular p24) were measured.

Preadipocytes or adipocytes alone did not affect memory
CD4þT-cell activation or HIV production, but enhanced
T-cell activation and HIV production in the presence of
IL2, IL7 or IL15. Figure 2a shows representative CD69/
p24 dot plots of infected (R5-tropic) memory CD4þ T
cells after 7 days coculture with preadipocytes or
adipocytes with or without IL2. Compared with medium
alone, adipocytes increased CD69 and p24 in infected
memory CD4þ T cells nearly two–fold with IL2, IL7 or
IL15 (P< 0.05 for IL2 and IL15, n¼ 3), whereas addition
of proinflammatory cytokines IL6, IL8 or TNFa into
cocultures had no effect (Fig. 2b). Extracellular HIV
production by memory CD4þ T cells also increased two
to three-fold by adipocytes with IL2, IL7 or IL15
(Fig. 2c). Thus, IL2, IL7 or IL15 in adipose depots may be
important for HIV persistence.

We assessed the role of adipose tissue IL6 in enhancing
HIV replication by memory CD4þ T cells. Adipose cells
r Health, Inc. All rights reserved.
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are major sources of IL6, and the combination of IL2 and
proinflammatory cytokines induces HIV replication from
latently infected CD4þ T cells [21,22]. Combinations of
IL7 or IL15 with pro-inflammatory cytokines increased
both T-cell activation (data not shown) and HIV
replication (Fig. 2d). More IL6 mRNA was found in
fractionated mature adipocytes from adipose tissues of
HIV patients compared with those from healthy controls
(Fig. 2e, n¼ 3), consistent with previous reports
[19,23,24]. In coculture experiments, HIV-infected
memory CD4þ T cells increased preadipocyte IL6
secretion nearly three-fold (P< 0.01, n¼ 3, Fig. 2f).
Blocking antibodies against IL6 and other candidate
factors in coculture experiments showed that blocking
IL6 and integrin-a1b1 very late antigen-1 (VLA-1)
signalling mitigated adipocyte-mediated increases in
T-cell activation (data not shown) and HIV production
(Fig. 2g,h). Blocking soluble IL6 reduced adipocyte-
mediated enhancement of HIV production by nearly
10–30% (Fig. 2g), and blocking both IL6R and integrin
a1b1 abolished HIV production (Fig. 2h). These data
suggest a role for IL6 and integrin a1b1 signalling for
adipose-induced T-cell activation and HIV replication
(although promiscuous interactions with other integrin
chains could also be involved). Adipocytes further
enhanced viability of T cells from 43–47% to 61–72%
after 8 days’ coculture (Fig. 2i).

We lastly determined whether AT-SVF cells support
productive HIV infection ex vivo (Fig. 2j,k). AT-SVF cells
were isolated from healthy donor adipose tissues, then
uninfected or infected with HIV (R5-tropic) for 24 h,
washed and cultured with or without IL2 or IL7 for up to 8
days. CD69þ expression by untreated, uninfected AT-SVF
memory CD4þ T cells declined to 28–35% (compared
with >60% from fresh AT-SVF, Fig. 1d), but remained at
65–90% if cultured with IL2 or IL7 (P< 0.05 compared to
untreated, n¼ 2–4, Fig. 2j). HIV production (p24 ELISA)
 Copyright © 2015 Wolters Kluwer H

expression and (c) HIV production (one p24 ELISA, representative o
days co-culture with adipocytes and either IL2, IL7, IL15, IL6, IL8, T
combinations of gamma-chain and proinflammatory cytokines. Me
with HIV (NSN-SX), followed by treatment with 10 ng/ml cytokines
mRNA expression by the mature adipocyte fraction (‘floaters’) of A
expression levels relative to GAPDH (�P<0.05, n¼3). (f) Adipose
Preadipocytes or adipocytes were cultured with IL2 medium alone, o
IL2 for 6 days, followed by IL6 measurement. Shown are mean � S
soluble ECM proteins induce HIV replication. Memory CD4þ T
adipocytes and IL2 for 5 days with blocking abs (5–10 mg/ml) again
(h). Shown are p24 ELISAs of 3–4 experiments. (i) Viability of memo
or HIV-infected memory CD4þ T cells were co-cultured with adipo
(�P<0.05, n¼5–6). (j–k) Healthy control donor AT-SVF cells trea
CD69 expression by AT-SVF CD3þCD4þCD45ROþ cells during cu
HIV production by healthy control donor AT-SVF cells. AT-SVF cells
IL2 or IL7 (shown are p24 ELISAs representative of 2–3 experime

Fig. 2. (Continued )
by infected AT-SVF cells occurred without addition of IL2
or IL7, but the cellular source of productive infection was
not determined (Fig. 2k). Thus, adipose cells can induce
HIV replication, mediated by factors elevated in adipose
tissue of HIV-infected persons.
Discussion

Adipose tissue is a likely sanctuary site for HIV in ART-
treated patients. Adipose tissue contains activated memory
CD4þ T cells, the major cellular reservoir for HIV [1].
Adipose memory CD4þ T-cell numbers declined relative
to CD8þ T-cells in HIV patients. Adipocytes potentiated
CD4þ T-cell activation and HIV replication in vitro in the
presence of IL2, IL7 or IL15, cytokines known to be
produced in adipose depots [25–27].

HIV provirus was detectable in AT-SVF from different fat
depots (subcutaneous, abdominal visceral, deep neck) of
all five patients studied, in association with decreased
memory CD4þ and increased CD8þ T cells (Fig. 1).
Inversion of the CD4þ/CD8þ ratio is also observed in
peripheral blood and GALT of HIV patients [28].
Memory T cells in adipose tissue of healthy donors
and HIV patients expressed high levels of CD69þ,
indicating activation. CD69þ-high expression typically
distinguishes resting memory T cells in peripheral blood
from T cells in tissues [7], suggesting that blood
contamination of AT-SVF samples was unlikely. Precise
determination of viral copy number was limited due to
cell numbers, but each nested PCR replicate contained
approximately 1� 105 AT-SVF cell equivalents of DNA,
of which 1–10% were memory CD4þ T cells. Assuming
one HIV copy per positive PCR product in AT-SVF
CD4þT cells, there could be one copy per 1� 104 CD4þ

T cells in adipose tissue, comparable to HIV DNA levels
ealth, Inc. All rights reserved.

f 3–4 experiments) by infected memory CD4þ T cells after 5
NFa, or without cytokines. (d) Induction of HIV replication by
mory CD4þ T cells from healthy donor blood were infected

for 5 days (shown are p24 ELISAs of three experiments). (e) IL6
T from uninfected healthy control donors or HIV patients. IL6

IL6 production increase by infected memory CD4þ T cells.
r with uninfected and HIV-infected memory CD4þ T cells and

EM extracellular IL6 (�P<0.05, n¼3). (g–h) Adipose IL6 and
cells were infected, then co-cultured with preadipocytes or
st soluble IL6 (g), or IL6 receptor, integrin a1, and integrin b1
ry CD4þ T cells during co-culture with adipocytes. Uninfected
cytes and IL2 for 7 days, followed by viability measurement.

ted with gamma-chain cytokines and HIV infected ex vivo. (j)
lture with IL2 or IL7 (�P< 0.05 compared to UT, n¼2–4). (k)
were infected with HIV and cultured 4–8 days without or with

nts).
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in other reservoirs [2,29]. However, the precise cellular
source of this AT-SVF HIV, and contribution of infected
macrophages, is still to be determined.

Adipose cells enhanced CD4þ T-cell activation and HIV
replication with gamma-chain cytokines and inflammatory
factors (Fig. 2). IL2, IL7 and IL15 are expressed in
lymphoid and nonlymphoid tissues, including adipose
tissue, and regulate T-cell homeostatic stimulation,
proliferation and HIV infection [25–27]. A systemic
elevation of these cytokines is also observedduring primary
infection or following ART interruption [30]. Synergy
between adipose tissue and these cytokines has important
implications for HIV persistence in lymphoid tissues such
as bone marrow, thymus and gut-associated lymphoid
tissue, which are intimately associated with adipocytes
[4–6]. IL6 expression is increased in adipose tissue in
obesity and HIV-associated lipodystrophy [23,24], and
expression of VLA-1 by memory CD4 T cells is increased
during activation in inflamed tissues [31,32]. VLA-1
ligands include collagens and fibronectin, which enhance
CD4þ T-cell activation and HIV production [33,34]. In
addition, adipose tissue reorganization during HIV
lipodystrophy is partly due to breakdown of extracellular
matrix and increased expression of collagens and
fibronectin leading to fibrosis [19,35].

Adipose tissue may be a widespread sanctuary for HIV,
and ongoing studies are investigating the replication-
competence and infectiousness of AT-SVF virus, and
whether adipose tissue presents a barrier to ART drugs. A
better understanding of adipose tissue as a potential HIV
reservoir and its mechanisms of viral induction will be
important for effective viral eradication strategies.
Acknowledgements

We thank the Baylor College of Medicine CFARVirology
Core for generation of virus stocks, and the DNA
Sequencing Core for HIV sequencing. We are grateful to
Dr Caroline Pond for critical insights and review of the
manuscript. This research was funded by National Institutes
of Health-National Institute of Diabetes and Digestive and
Kidney Diseases grant 1R01DK081553 (A.B.), National
Institutes of Health-National Institute of Allergy and
Infectious Diseases grant R21AI116208 (D.E.L. and A.B.)
and National Institutes of Health-National Institute of
Allergy and Infectious Diseases, Baylor College of Medi-
cine/University of Texas at Houston Center for AIDS
Research (CFAR) grant 5P30AI36211 (D.E.L.).

J.C. conducted experiments and wrote the manuscript.
J.W.S. procured adipose tissue samples from study
participants. D.J.L. and N.A. performed experiments
and analysed data. D.I., X.Y., C.N., C.A.K., P.A.O.,
M.L.M. and J.E.B provided technical expertise and
 Copyright © 2015 Wolters Kluwe
analysed data. A.B. and D.E.L. supervised the study and
reviewed the manuscript. All authors read and approved
the final manuscript.

Conflicts of interest
There are no conflicts of interest.
References

1. Siliciano RF, Greene WC. HIV latency. Cold Spring Harb
Perspect Med 2011; 1:a007096.

2. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H,
et al. Quantification of latent tissue reservoirs and total body
viral load in HIV-1 infection. Nature 1997; 387:183–188.

3. Das B, Dobrowolski C, Shahir AM, Feng Z, Yu X, Sha J, et al.
Short chain fatty acids potently induce latent HIV-1 in T-cells
by activating P-TEFb and multiple histone modifications. Vir-
ology 2015; 474:65–81.

4. Gimble JM, Robinson CE, Wu X, Kelly KA. The function of
adipocytes in the bone marrow stroma: an update. Bone 1996;
19:421–428.

5. Pond CM. Paracrine relationships between adipose and lym-
phoid tissues: implications for the mechanism of HIV-asso-
ciated adipose redistribution syndrome. Trends Immunol 2003;
24:13–18.

6. Dixit VD. Thymic fatness and approaches to enhance thymo-
poietic fitness in aging. Curr Opin Immunol 2010; 22:521–528.

7. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P,
Thome JJ, et al. Distribution and compartmentalization of hu-
man circulating and tissue-resident memory T cell subsets.
Immunity 2013; 38:187–197.

8. McLaughlin T, Liu LF, Lamendola C, Shen L, Morton J, Rivas H,
et al. T-cell profile in adipose tissue is associated with insulin
resistance and systemic inflammation in humans. Arterioscler
Thromb Vasc Biol 2014; 34:2637–2643.

9. Travers RL, Motta AC, Betts JA, Bouloumié A, Thompson D. The
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