Lung disease in HIV: Causes and consequences

Alison Morris, MD, MS

Professor of Medicine, Clinical & Translational Science, & Immunology

UPMC Chair for Translational Pulmonary and Critical Care Research

Vice Chair for Clinical Research, Department of Medicine Director, Center for Medicine and the Microbiome University of Pittsburgh

Pulmonary co-morbidities in HIV?

Outline

- Scope of the problem
 - Pre-ART
 - Post-ART
- Phenotypes of COPD
 - Epidemiology
 - Contribution of HIV
 - Biomarkers
- Potential role of the microbiome
- Approach to therapy

Lung disease leading cause of mortality in early HIV epidemic

Infections: Pneumocystis pneumonia Tuberculosis Bacterial pneumonia

Neoplasms: Kaposi sarcoma Lymphoma

COPD and HIV Pre-ART: Increased prevalence even in those without AIDS, primarily emphysema

Pulmonary Complications of HIV Study (PCHIS)

- >1,300 HIV+ and HIV- men
- HIV+ individuals:
 - More common respiratory symptoms
 - Abnormal diffusing capacity (DLco)
 - Progressive COPD-like changes after pneumonia (PCP & bacterial)
 - HIV independent risk

What do we know about COPD in the ART era?

COPD is more common in HIV+ Veterans

COPD prevalence

COPD incidence per 1,000 person-yrs

-Based on self report or chart review

RESEARCH CENTER

Women's
Interagency HIV
Study (WIHS)

Pittsburgh Clinical Trials Unit

University of Washington

Respiratory symptoms and inhaler use common in HIV+ outpatients

Only 15% had prior PFTs

Pulmonary function abnormalities are common

Increased risk of pneumonia in HIV+ COPD

CAP, TB, and PCP in all ART eras

Pulmonary function independently predicts walk distance in HIV

		Beta (95%CI)	P value
	Caucasian	28.7 (12.1-45.4)	0.001
	Weight kg	-0.9 (-1.40.4)	<0.001
	Height cm	1.4 (0.4- 2.3)	0.004
	Pack-years	-0.9 (-1.40.4)	0.001
ГΙ	FEV% post-BD	0.6 (0.01- 1.1)	0.047
	DLco %	0.7 (0.2-1.3)	0.006
	SGRQ	-0.8 (-1.30.3)	0.001
	IL-6 (square root)	-22.9 (-42.92.9)	0.025
	IL-2 (square root)	14.8 (3.9- 25.6)	0.008
	Constant	207.3 (40.6-374.1)	0.012

Survival worse in HIV+COPD

Figure: Kaplan Meier survival estimates for those with and without a post-bronchodilator (BD) forced expiratory volume at 1 second/forced vital capacity (FEV₁/FVC)<0.7 (**A**) and those with and without a single breath diffusing capacity for carbon monoxide (DL_{CO}) <70% predicted (**B**).

A. Kaplan-Meier survival estimates for Post-BD FEV₁/FVC (P = 0.026)

B. Kaplan-Meier survival estimates for DL_{co} (P = 0.012)

Sub-Phenotypes of COPD

Peripheral inflammation

HIV phenotypes

- Emphysema
- DLco impairment
- Fixed airway obstruction/ COPD
- Asthma
- Pulmonary hypertension
- Cardio-pulmonary

Why are phenotypes important?

- Functional consequences
- Different pathways and biomarkers
- Different response to treatment

Airway obstruction

- Several definitions
- FEV1/FVC<70%, FEV1< 80% predicted
- Below LLN
- Primarily in smokers

Airway obstruction risk factors

- Age
- Pack-year smoking
- Intravenous drug use
- ART
- History of bacterial pneumonia or use of PCP prophylaxis

Lung HIV predictors of airway obstruction

- Age: OR 1.75 (p<0.001)
- Current smoking: OR 1.77 (p=0.004)
- >20 pack-years: OR 1.68 (p=0.003)
- History of asthma: OR 1.81 (p=0.005)
- History of *Pneumocystis:* OR 1.97 (p=0.005)

Airway obstruction increases by lower CD4 in MACS/VACS

Diffusing capacity

- Measures multiple aspects of lung and cardiac function
- Noted to be low in HIV in pre-ART era
- Important phenotype in HIV
- Persists in ART era

DLco is abnormal in majority of HIV+ individuals

- -85% of cohort have DLco<80% predicted
- -35% are below 60% predicted
- -24% of never smokers are below 60% predicted

Different risk factors for DLco in smokers and never smokers

Multivariable regression models showing independent associations for DL_{CO} % predicted in ever smokers and never smokers.

	Ever Smokers*		Never Smokers	
	β-coefficient	p-value	β-coefficient	p-value
Post-FEV ₁ % predicted	0.3940	<0.001		
Post-BD FVC % predicted			0.3323	0.02
Log Fraction <-950 HU	-0.0423	0.001		
Sputum % Neutrophils			-0.1967	0.03
Sputum % Lymphocyte (square root)			0.9407	0.009

Clinical risk factors and DLco

- Smoking
- CD4 cell count<200
- HIV viral load >500 copies
- Hepatitis C co-infection

Does HIV contribute to these phenotypes?

HIV associated with lower pre-BD FEV1 although no difference in COPD

HIV independent predictor of lower FEV1 and FVC in ALIVE cohort

Drummond MB et al, AIDS, 2013; Ronit A et al, Thorax, 2018

No difference in obstruction by HIV status if preserved CD4 count

HIV is independent predictor of DLco in MACS/VACS

FIGURE 2. Depicts the distribution of severity of DLCO impairment by HIV status.

Effect seen in smokers and non-smokers, high and low CD4 although worse in risk groups

DLco lower in HIV+ women and more have moderately reduced DLco (<60%)

Progression of pulmonary deficits in HIV

- 285 HIV+ individuals
- Median follow-up 6.3 years
- FEV1 declined 1%/62 ml per year
 - Older age, GOLD stage predicted decline
 - Female sex protective
- Rapid FEV1 decline
 - Age, marijuana
 - Female sex protective
- No decline in DLco
 - Smoking, history of pneumonia predicted decline
- No relationship to HIV-associated variables

HIV not an independent predictor of decline except in those with viral load >75,000

Slow progression in HIV in START study

insight

- 1,026 participants
- No impact of early or delayed ART on lung function
- FEV1 -24 to -29 ml per year
- Smokers had faster average FEV1 decline
 - -38.3 mL/yr vs -25.1 mL/yr
 - More likely to be rapid decliners

Biomarkers suggest potential pathways

Lung measure	Circulating soluble and HIV-related markers
Decreased airflow (low FEV1)	 Inflammation (IL-6, CRP) Monocyte activation (sCD163) Endothelial dysfunction (endothelin-1) Shortened PBMC telomere length
Decreased airflow (low FVC)	 Inflammation (IL-6, CRP) Monocyte activation (sCD163)
Airflow obstruction (decreased FEV1/FVC)	Monocyte activation (sCD163)
Impaired gas exchange (low DLCO)	 Inflammation (IL-6, TNFα, CRP) Monocyte activation (sCD163, sCD14, IL-2 receptor) Microbial translocation (LPS) Endothelial activation (endothelin-1)
Emphysema (by CT scan)	 Monocyte activation (sCD14) Shortened PBMC telomere length

Lung microbiome has local and systemic effects

Lung HIV Microbiome Project

- 6 clinical sites and data coordinating center
- Focus on normal lung (non-smokers and smokers) and HIV
- Bronchoscopy with 16S rRNA analyses

No significant difference by HIV status in lung bacterial communities

Why do we not see differences?

- Wrong populations
- Difficulty with detecting bacteria in BAL
- Longitudinal studies may be needed
- Taxonomy less important: metabolites or gene function
- Other sites may influence lung function
- Need to look at all organisms

What about fungus (mycobiome)?

Mycobiome likely shapes the immune response

-Lung could be affected by local mycobiome, GI tract mycobiome, or translocation of fungus

Lung HIV Mycobiome Study

- 56 HIV+ and HIV- individuals from Lung HIV Microbiome Program
- Oral wash (OW), induced sputum (IS) and bronchoalveolar lavage (BAL), environmental controls
- Analyzed by sample type, HIV status, and lung function

HIV+ and HIV- differ in communities: Primarily *Pneumocystis*

Fungal microbiome in HIV COPD: Primarily Pneumocystis

BAL in HIV+ without COPD

Host response to *Pneumocystis jirovecii* colonization: Th1 inflammatory gene expression, increases in MMP-12, and IL-6

Table 3. Genes differentially expressed between *Pneumocystis*-colonized and non-colonized participants

Human gene	Human gene name	FDR	Fold ratio	
CXCL9	Chemokine (C-X-C motif) ligand 9	0.00153	3.204959	
CXCL10	Chemokine (C-X-C motif) ligand 10	0.00992	3.079771	
CXCL11	Chemokine (C-X-C motif) ligand 11	0.0193	2.931513	
INF-γ	Gamma interferon	0.0275	2.478151	
UBD	Ubiquitin D	0.0487	2.292343	
KCNJ10	Potassium inwardly-rectifying channel, subfamily J, Member 10	0.0487	2.257885	
IDO1	Indolamine 2,3-dioxygenase 1	0.0487	2.231945	
GBP5	Guanylate binding protein 5	0.0487	2.038483	
FAM26F	Family with sequence similarity 26, member F	0.0487	1.976551	

Genes displayed fell within the criterion of a FDR threshold \leq 0.05. Genes are ranked by fold change.

Airway obstruction increases in Pc-colonized monkeys, but not in SHIV infection alone

Peak expiratory flow

FEV 0.4

No therapies tested in HIV

TREATMENT OPTIONS FOR COPD

- -Pneumocystis treatment
- -Anti-inflammatories
- -Endothelin antagonists

TMP-SMX did not influence lung function in NHP model

Why not?

- -Microbial community may be important
- -Damage already done
- -Perpetuation of inflammation

Statins in HIV COPD: Rationale

- Reductions in circulating inflammatory markers (IL-6, CRP, and MMPs) pertinent to HIV COPD
- General population COPD statin RCT disappointing, but trend to improvement in decline in lung function (FEV₁ % predicted) over time
- COPD in chronic HIV, with enhanced immune activation, may be more likely to derive benefit

Trend for effect on rate of decline in HIV+ statin users

Statin initiation slowed decline in FEV₁

- -Pre-statin rate of decline -1.2% /100 days (p=0.002)
- -Post-statin rate of decline -0.2% (p=0.3)
- -p=0.002 for comparison

Statins for Pulmonary Complications of Chronic HIV (SPARC Trial)

- HIV+ participants from 2 sites (Pitt, UCSF)
- Inclusion: $FEV_1/FVC<0.7$ or $DL_{CO}<0.8$
- Exclusion: Pre-existing indication for statin, contraindication to study drug, plans to change ART or smoking status
- Adaptive randomization to placebo vs. rosuvastatin, double-blinded
- PFTs and biomarkers collected at 0, 12, and 24 weeks
- Comparisons performed using paired t-tests and Wilcoxon rank-sum

FEV₁ % predicted declined significantly in placebo group, stable in those receiving rosuvastatin

Median decline in absolute FEV₁ 70 mL over 6 months

DLco % predicted unchanged in placebo, but increased in those receiving rosuvastatin

Decreases in IL-6 and endothelin-1 in rosuvastatin group

	Placebo (n = 11)			Rosuvastatin (n = 10)			
	Median	(Q1, Q3)	p*	Median	(Q1, Q3)	p*	p**
hs-CRP	-0.02	(-0.14, 0.08)	0.65	-0.05	(-0.43, 0.08)	0.43	0.79
IL-6	-0.01	(-0.12, 0.08)	0.52	-0.12	(-0.21, -0.09)	0.02	0.11
ET-1	-0.16	(-0.44, 0.10)	0.08	-0.32	(-0.39, 0.04)	0.005	0.003

^{*}Signed Rank Test to determine if the median differs from zero

^{**}Wilcoxon test to determine if the change in the placebo group equals the change in the statin group

Statins for lung disease?

- Need bigger trial, absolute difference not significant between groups
- Indications?
 - FEV₁ decline prevented even in those without airway obstruction
 - Non-smokers
 - DLco abnormalities

Summary

- COPD is a common problem in HIV
- Associated with morbidity and mortality
- Different phenotypes of lung disease
- Potential role of the microbiome
- Optimal therapy undefined

Acknowledgments

Meghan Fitzpatrick Adam Fitch Cathy Kessinger **Heather Michael Seyed Nouraie** John Ries Vicki Petraglia Shulin Qin Barbara Methe Kelvin Li **Libing Yang** Danny Dunlap **Georgios Kitsios** Carl Koch Tim Hand

Collaborators

Univ. of Pittsburgh Renee Weinmann Deb McMahon Larry Kingsley J. Ken Leader **Nouraie Sayed** John Mellors University of California, San Francisco Laurence Huang **Ruth Greenblatt**

University of California, Los Angeles Eric Kleerup University of Washington **Kristina Crothers**

New York University

Elodie Ghedin

