## HIV and Ageing Challenges and Goals

Julian Falutz MD, FRCPC

**Associate Professor** 

Director Comprehensive HIV-Aging Initiative

Chronic Viral Illness Service & Division of Geriatrics

McGill University Health Center

Montreal, Canada

HIV Drug Therapy, Glasgow October 2018



### Conflict of Interest Disclosure

Speaker's bureau: Merck, ViiV, Gilead

#### **Outline**

- Risks of late presentation: greater immunosuppression; multimorbidity; frailty and cognition
- Promoting healthspan: cognitive reserve; resilience
- Successful aging

#### Tsunami: projected age distribution of PLWH by 2030



**2010**- 30% older than 50 and 8% older than 60

**2015**- 50% older than 50

2030- 75% older than 50 (2.5x increase) and 40% older than 60 (5x increase)

#### **Caveat**

- Current epidemiologic modelling for PLWH is based on a variable mix of:
  - PLWH who survived the pre-HAART and early HAART eras
  - recently infected persons with radically different cART history and associated immuno-virologic profile
- Projections and clinical course of the latter is emerging

#### **Realities of older PLWH**

- Late diagnosis: HIV not considered, increased risk of heterosexual transmission (less condom use, age-related female genitalia changes, little blue pill et al)
- Greater immunosuppression: lower nadir CD4; more often symptomatic at presentation
- Impaired immune recovery: slower and more often incomplete (but more consistent cART adherence)
- Multi-morbidity including geriatric syndromes and underdiagnosed mental health disorders: related risks of polypharmacy and polydoctory
- Lifestyle and social challenges: stigmatization, isolation (family, friends), financial, unprepared community services

## Late presentation of HIV (CD4<350): increased risk with older age and heterosexual transmission

|                                                                   | Coefficient ± SE   | Odds ratio (95% CI) | p-value  |
|-------------------------------------------------------------------|--------------------|---------------------|----------|
| Intercept                                                         | $21.6 \pm 56.6$    | _                   | _        |
| Year of presentation for care                                     | $-0.011 \pm 0.028$ | 1.0 (0.94–1.1)      | 0.69     |
| Age (by 10 years older)                                           | $0.23 \pm 0.084$   | 1.3 (1.1-1.5)       | 0.0069   |
| Sex (0 = Female, 1 = Male)                                        | $0.35 \pm 0.11$    | 2.0 (1.3-3.1)       | 0.0021   |
| SSA <sup>a</sup> origin (0 = No, 1 = Yes)                         | $0.61\pm0.14$      | 3.4 (1.9-5.9)       | < 0.0001 |
| Other <sup>a</sup> non belgian origin (0 = No, 1 = Yes)           | $0.31 \pm 0.16$    | 1.9 (1.0-3.4)       | 0.044    |
| Hetetosexual <sup>b</sup> mode of acquisition $(0 = No, 1 = Yes)$ | $0.43 \pm 0.14$    | 2.4 (1.4-4.1)       | 0.0024   |

#### **Modes of HIV transmission in the elderly**



## 1<sup>st</sup> presentation in >50 yo c/w >50: -lower nadir CD4 count -lower proportion with CD4 count ≥350



#### Lower nadir CD4 predicts lower "plateau" CD4 after effective cART: older PLWH at risk



Lok JJ AIDS 2010

### Non-AIDS co-morbidities are similar to those in the general older population but occur at a younger age

increased risk w low nadir (<200), poor CD4 recovery (CD5 < 500), CD4/CD8 <1.0

- Non-AIDS defining cancers
- Liver: viral hepatitis, NAFLD and ETOH-related
- Cardiovascular
- Metabolic (CVD, DLP, DM2, visceral adiposity, sarcopenia)
- Bone demineralization
- Renal
- JF Neurocognitive decline

#### Also, high rates of geriatric syndromes in PLWH: UCSF SCOPE cohort



### Increased prevalence of frailty (FP+) in PLWH c/w controls at all ages: AGEhIV Cohort



# Change in biologic and chronologic age in the elderly is heterogenous: frailty may be a useful surrogate to operationalize this variability



## Physiologic aging (>80) is associated with changes in immune parameters and increased markers of chronic inflammation (immunosenescence):

- Expansion of terminally differentiated CD28-neg Tcells
- Reduction of naïve Tc pool (both CD4+ and CD8+)
- Associated with CMV seropositivity
- Inverted CD4/CD8 ratio (<1.0)</li>

This profile (aka Immune Risk Profile-IRP): predicts overall decreased survival in > 80 yo healthy centenarians have normal CD4/CD8 ratio

### Most PLWH with durable viral suppression and CD4>350 do not achieve a normal CD4/CD8 ratio (>1.0)



#### Pathobiology: does the changing comorbidity profile in aging PLWH reflect accelerated or accentuated aging?

- Does HIV accelerate specific pathways and mechanisms common to an aging phenotype (no consensus on single definition of aging)?
- Is HIV an additional risk factor for development of chronic conditions accentuating prevalence of disease?

### Evidence supporting accelerated aging phenotype in PLWH

- DNA methylation patterns suggest increased biologic age of about 5 years (Gross, Mol Cell 2016)
- Telomere length in PBMCs of PLWH at all disease stages are decreased and similar to those of controls about 40 years older (Bestilny AIDS 2000)
- Immune senescent cell markers in treated PLWH similar to patterns seen in HIV-negative controls decades older (Appay Curr Opin HIV AIDS 2016)

### Chronic inflammation ≅ idling motor ('cost' of idling too long .....)



### Aging associated chronic diseases regulated by chronic inflammation



#### Chronic disease and cognition in the elderly

- Common chronic diseases are associated with cognitive decline in the middle-aged and older persons
- Frailty is associated with an increased risk of cognitive decline
- White matter hyperintensities (leukoariosis) increase risk of cognitive decline
- Multimorbidity leads to polypharmacy, often including drugs with high anti-cholinergic burden which are associated with cognitive decline

### PLWH are more likely to take non-ARV meds with neurocognitive adverse effects: WIHS

|                         | HIV Infected | HIV Uninfected |                     |          |
|-------------------------|--------------|----------------|---------------------|----------|
| <b>Medication Class</b> | n visits (%) | n visits (%)   | OR (95% CI)         | P        |
| Anticonvulsant          | 1274 (4.3)   | 450 (3.6)      | 0.96 (0.74 to 1.24) | 0.74     |
| Antianxiety             | 3706 (12.4)  | 1047 (8.4)     | 1.41 (1.17 to 1.70) | 0.0004   |
| Anticholinergic         | 676 (2.3)    | 218 (1.7)      | 1.20 (0.86 to 1.67) | 0.29     |
| Antipsychotic           | 2074 (7.0)   | 903 (7.2)      | 0.93 (0.76 to 1.15) | 0.52     |
| Amphetamine             | 78 (0.3)     | 34 (0.3)       | 0.79 (0.28 to 2.20) | 0.66     |
| Opioid                  | 3420 (11.5)  | 1102 (8.8)     | 1.35 (1.15 to 1.60) | 0.0003   |
| Beta blocker            | 1004 (3.4)   | 304 (2.4)      | 1.29 (0.90 to 1.86) | 0.17     |
| Gastrointestinal        | 807 (2.7)    | 186 (1.5)      | 1.78 (1.27 to 2.50) | 0.0009   |
| Antihistamine           | 2053 (6.9)   | 645 (5.2)      | 1.42 (1.17 to 1.73) | 0.0004   |
| Muscle relaxant         | 718 (2.4)    | 316 (2.5)      | 0.87 (0.66 to 1.16) | 0.35     |
| Antidepressant          | 6231 (20.9)  | 1539 (12.3)    | 1.58 (1.35 to 1.85) | < 0.0001 |

# In the general population, modifiable risk factors at age 50 predict impaired physical function and cognitive decline 20 years later: Whitehall II Study

Modifiable risk factors:
Physical exercise
Depression
Obesity
FEV1 (tobacco)



## Self-reported high physical activity is associated with lower risk of cognitive decline and prevalent dementia in older persons



#### **Cognitive Reserve**

- Factor contributing to a weak association between neuropathologic evidence of dementia-related changes and clinical manifestations
- Initially felt to be linked to educational achievement (sorry, but 3 PhD's doesn't always help)
- Additional related factors include: occupational complexity, social participation, engagement in leisure activities
- May delay onset of clinical signs and symptoms ('compression of cognitive morbidity')
- Can be operationalized (no consensus)

JF

# Assessment of cognitive reserve (Cognitive Reserve Index) is associated with reduced dementia prevalence in the elderly

#### Variables Used to Create the Cognitive Reserve Index

#### Components

- Education
- Socio-economic status
- Current physical activity
- Marital status
- Social participation
- Mental activities



### PLWH with symptomatic HAND have lower cognitive reserve

Cognitive Reserve: composite mean zscores: years of education; verbal IQ; highest occupation level.



Morgan EE AIDS Behaviour 2012

#### Resilience

- Ability of a person to withstand or recover from functional decline after an acute or chronic health stressor
- Physical resilience focuses on maintenance or recovery of function after a biomedical challenge
- Reflects adaptive physiologic responses at the level of molecules, cells, and organs which support homeostasis
- Physical resilience is not the opposite of frailty

### Variables associated with at least moderately high resilience in PLWH (50 yo, >20 yrs HIV+, nadir CD4-190)

#### Results

- Mean: moderately low
- 43% > moderate to high
- 37% moderately lowmoderate
- 19% low

#### 25 Item Resilience Scale\*

- Perception of ageing
- Coping strategies
- QoL
- Depression & anxiety

|       | Multivariate regression                                         |                                           |
|-------|-----------------------------------------------------------------|-------------------------------------------|
| OR    | 95% CI                                                          | P value                                   |
| _     | _                                                               | _                                         |
|       |                                                                 |                                           |
| 1.272 | (1.105, 1.464)                                                  | .001                                      |
| _     | _                                                               | _                                         |
| 1.182 | (1.016, 1.375)                                                  | .030                                      |
| _     | _                                                               | _                                         |
|       |                                                                 |                                           |
| _     | -                                                               | -                                         |
| _     | _                                                               | _                                         |
| _     | _                                                               | _                                         |
| 1.724 | (1.159, 2.565)                                                  | .007                                      |
| _     | _                                                               | -                                         |
| _     | _                                                               | -                                         |
| _     | _                                                               | -                                         |
| _     | _                                                               | -                                         |
|       |                                                                 |                                           |
| _     | _                                                               | -                                         |
| _     | _                                                               | -                                         |
|       |                                                                 |                                           |
| 0.874 | (0.793, 0.963)                                                  | .007                                      |
| _     | _                                                               | -                                         |
| _     | _                                                               |                                           |
|       | -<br>1.272<br>-<br>1.182<br>-<br>-<br>-<br>1.724<br>-<br>-<br>- | 1.272 (1.105, 1.464) 1.182 (1.016, 1.375) |

\*Heilemann J Nursing Measurement 2003

JF

Fumaz CR AIDS Care 2015

## Is successful aging possible in PLWH?

## Aging successfully with HIV is possible

No consensus on definition, WHO program evolving: includes *at least* avoidance of disease and disability, high cognitive and physical capacity, social engagement

Think beyond immuno-virologic control metrics

## Aging successfully with HIV is possible

- Diagnose HIV early and treat rationally
- Assess and manage comorbidity risks proactively to avoid multimorbidity
- Minimize polypharmacy and review all Rx annually
- Recognize and manage risks for cognitive decline;
   encourage activities which contribute to cognitive reserve
- Assess functional status and adopt rehabilitation interventions to limit impairments

### Aging successfully with HIV is possible

 Introduce interdisciplinary management principles: SW, OT, PT, pharmacist, dietician, peer and community support, geriatrician involvement

Al: Advocate + Initiate: education and empowerment

#### New approach needed to manage aging PLWH

From One Syndrome to Many: Incorporating Geriatric Consultation Into HIV Care

Harjot K. Singh, <sup>1</sup> Tessa Del Carmen, <sup>2</sup> Ryann Freeman, <sup>2,3</sup> Marshall J. Glesby, <sup>1</sup> and Eugenia L. Siegler <sup>2</sup>

Divisions of <sup>1</sup>Infectious Diseases and <sup>2</sup>Geriatrics and Palliative Medicine, Weill Cornell Medical College; and <sup>3</sup>ACRIA, Center on HIV and Aging, New York

Clin Inf Dis 2017

**EDITORIAL** 

**Geriatric-HIV medicine: A science in its infancy** 

Giovanni Guaraldi and Andrea Cossarizza 📵

University of Modena and Reggio Emilia School of Medicine, Modena, Italy

Virulence 2017

#### Thank you

