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ABSTRACT 14 

Aortic stiffening is a major independent risk factor for cardiovascular diseases, cognitive 15 

dysfunction and other chronic disorders of aging.  Mitochondria-derived reactive oxygen species 16 

are a key source of arterial oxidative stress which may contribute to arterial stiffening by 17 

promoting adverse structural changes—including collagen overabundance and elastin 18 

degradation—and enhancing inflammation, but the potential for mitochondria-targeted 19 

therapeutic strategies to ameliorate aortic stiffening with primary aging is unknown. We assessed 20 

aortic stiffness (pulse-wave velocity (aPWV)), ex-vivo aortic intrinsic mechanical properties 21 

(elastic modulus (EM) of collagen and elastin regions), and aortic protein expression in young (~ 22 

6 mo) and old (~27 mo) male c57BL/6 mice consuming normal drinking water (YC and OC) or 23 

water containing mitochondria-targeted antioxidant MitoQ (250 µM; YMQ and OMQ) for 4 24 

weeks. Both baseline and post-intervention aPWV values were higher in OC versus YC (post: 25 

482 ± 21 vs. 420 ± 5 cm/sec, p<0.05).  MitoQ had no effect in young mice but decreased aPWV 26 

in old mice (OMQ, 426 ± 20, p<0.05 vs. OC). MitoQ did not affect age-associated increases in 27 

aortic collagen-region EM, collagen expression, or pro-inflammatory cytokine expression, but 28 

partially attenuated age-associated decreases in elastin-region EM and elastin expression. Our 29 

results demonstrating that MitoQ reverses in vivo aortic stiffness in old mice suggest that 30 

mitochondria-targeted antioxidants may represent a novel, promising therapeutic strategy for 31 

decreasing aortic stiffness with primary aging and, possibly, age-related clinical disorders in 32 

humans. The de-stiffening effects of MitoQ treatment may be at least partially mediated by 33 

attenuation/reversal of age-related aortic elastin degradation.  34 

35 
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NEW & NOTEWORTHY 36 

We show that 4 weeks of treatment with the mitochondria-specific antioxidant MitoQ in mice 37 

completely reverses the age-associated elevation in aortic stiffness, assessed as aortic pulse-wave 38 

velocity. The de-stiffening effects of MitoQ treatment may be at least partially mediated by 39 

attenuation of age-related aortic elastin degradation. Our results suggest that mitochondria-40 

targeted therapeutic strategies may hold promise for decreasing arterial stiffening with aging in 41 

humans, possibly decreasing the risk of many chronic age-related clinical disorders.   42 
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ABBREVIATIONS 43 

aPWV, aortic pulse-wave velocity; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IHC, 44 

immunohistochemistry; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-10, interleukin-10; 45 

IFN- γ, interferon-gamma;  MMP, matrix metalloproteinase; mtROS, mitochondria-derived 46 

reactive oxygen species; NOX, NADPH oxidase; SOD2, manganese superoxide dismutase  47 

  48 
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INTRODUCTION 49 

Advancing age is a primary risk factor for the development of numerous chronic 50 

degenerative diseases, which are the leading causes of morbidity and mortality in the United 51 

States and other developed nations (20, 30, 41). A key event underlying the etiology of many 52 

chronic age-related disorders is stiffening of the large elastic arteries, specifically the aorta. 53 

Elevated aortic stiffness increases the pulsatile shear and pressure experienced by the heart, 54 

blood vessels and other organs, which can have numerous pathophysiological effects 55 

contributing to the development of disease (23, 32, 34, 35, 38, 62). Indeed, aortic pulse-wave 56 

velocity (aPWV), the gold-standard measure of arterial stiffness, is a strong independent risk 57 

factor for incident cardiovascular events among older adults (34, 50) and also predicts the 58 

development of chronic kidney disease, stroke, cognitive impairment, and Alzheimer’s Disease 59 

(2, 7, 18, 21, 43, 53). Current demographic trends forecast a major increase in the number of 60 

older adults in the coming decades which will be accompanied by attendant increases in disease 61 

prevalence and health care costs (19, 22, 56). As such, a top biomedical research priority is to 62 

identify strategies that prevent or reverse aortic stiffening with advancing age, as this may help 63 

prevent, reduce, or delay the development of multiple common disorders of aging.  64 

A key mechanism underlying the development of age-related arterial stiffening may be 65 

vascular mitochondrial oxidative stress and associated excessive production of mitochondria-66 

derived reactive oxygen species (mtROS). Mitochondria are now recognized as a primary source 67 

of arterial oxidative stress with aging and cardiovascular diseases (1, 4, 5, 16, 31, 38, 55, 61), 68 

and evidence from genetic models indicates that experimental modulation of mtROS affects 69 

large elastic artery stiffening. For example, age-related arterial stiffening, pathological 70 

remodeling, and vascular disease are accelerated in mice deficient in the mitochondrial 71 
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antioxidant protein manganese superoxide dismutase (SOD2) (61). In support of a role 72 

specifically for mitochondria-derived oxidative stress, selective deletion of a cytosolic isoform of 73 

pro-oxidant enzyme NADPH oxidase (NOX1/2)—with the mitochondrial isoform (NOX4) 74 

intact—does not prevent age-related arterial stiffening in the setting of atherosclerosis (55), 75 

implicating mtROS as a key driver of age-related arterial pathology.  76 

Excessive levels of arterial mtROS may promote arterial stiffness via redox-related 77 

alterations in structural protein turnover, and through induction of pro-inflammatory signaling. 78 

Changes in arterial wall structure are a major mechanism by which the large elastic arteries 79 

stiffen with age (9, 17, 24, 32, 62); specific structural alterations include increased deposition of 80 

the load-bearing protein collagen and degradation and fragmentation of elastin (17, 24, 42). 81 

Oxidative stress, including that derived specifically from mitochondria, alters the activity of the 82 

enzymes involved in structural protein turnover and shifts the balance of synthesis and 83 

breakdown toward collagen deposition and elastin degradation (9, 17, 24, 38, 55, 61, 62), 84 

contributing to dysregulation of structural protein homeostasis and consequent arterial stiffening.  85 

Mitochondria-derived ROS are also emerging as important for promoting and sustaining 86 

arterial inflammation, a hallmark of arterial aging and critical mediator of arterial stiffening (24, 87 

38, 39, 57). A pro-inflammatory environment in the vasculature, secondary to excessive mtROS 88 

production, may contribute to arterial stiffening through many mechanisms, including induction 89 

of gene expression patterns that alter structural protein turnover, impairment of vascular 90 

endothelial function, increases in vascular smooth muscle cell tone, and further invasion of the 91 

vascular wall by pro-inflammatory mediators that also reinforce oxidative stress (24, 31, 32, 39, 92 

57, 61).  93 
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Our laboratory recently demonstrated that treating old mice with the mitochondria-94 

targeted antioxidant MitoQ to lower mitochondrial oxidative stress completely reversed the age-95 

related impairment in arterial endothelial function in old mice (15). However, the effects of 96 

mitochondria-targeted antioxidants on aortic stiffness with primary aging have never been 97 

investigated. Therefore, in this study we tested the hypothesis that 4 weeks of MitoQ 98 

supplementation in the drinking water would decrease aortic stiffness (as assessed in vivo by 99 

aPWV) in old mice. To gain insight into the potential underlying mechanisms, we also assessed 100 

the collagen- and elastin-mediated contributions to intrinsic aortic stiffness (assessed ex vivo in 101 

aortic rings), aortic protein expression of these key structural proteins, and aortic expression of 102 

inflammatory cytokines.  103 

 104 

METHODS 105 

All studies were approved by the Institutional Animal Care and Use Committee at the 106 

University of Colorado Boulder and conformed to the Guide for the Care and Use of Laboratory 107 

Animals (National Research Council, 2011).  108 

 109 

Mice 110 

Male c57BL/6 mice, an established model of age-related vascular dysfunction (15, 48), 111 

were purchased from the aging colony at the National Institute on Aging at ~4 or ~25 months of 112 

age and allowed to acclimate to our facilities for 2 weeks prior to beginning treatment. Mice 113 

were housed in standard cages on a 12-hour light/dark cycle and were allowed access to normal 114 

rodent chow (Harlan 7917) and water ad libitum. Body mass and water intake were monitored 115 

regularly throughout the study.  116 
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 117 

MitoQ Treatment 118 

Based on reports of effective dose and duration of treatment with MitoQ and our previous 119 

work (15, 40, 46), mice were randomly assigned to treatment with MitoQ (250 µM; in the form 120 

of Mitoquinone mesylate adsorbed to β-cyclodextrin (~22% MitoQ by weight) from Antipodean 121 

Pharmaceuticals) (young MitoQ-treated [YMQ, ~6 mo., n=11] and old MitoQ-treated [OMQ, 122 

~27 mo., n=10]) or normal drinking water (young control [YC, ~8 mo., n=8] and old control 123 

[OC, ~27 mo., n=10]) for 4 weeks, a duration we have previously shown to be effective in 124 

reversing age-related arterial endothelial dysfunction (15). MitoQ was prepared fresh (the 125 

preparation is water-soluble) and administered in light-protected water bottles changed every 126 

three days.  127 

 128 

In Vivo Assessment of Arterial Stiffness: Aortic Pulse-Wave Velocity 129 

In vivo arterial stiffness was assessed at baseline and following 4 weeks of MitoQ 130 

treatment by aortic pulse-wave velocity (aPWV) using Doppler ultrasound, as previously 131 

described by our laboratory (11, 28). Briefly, mice were anesthetized via inhaled isoflurane (1.5-132 

2%) and positioned supine on a warmed platform with paws secured to ECG leads. Doppler 133 

probes were placed at the transverse aortic arch and abdominal aorta to detect pulse waves. Three 134 

consecutive 2-second recordings were made for each animal and used to determine time delay 135 

between the ECG R-wave and the foot of the Doppler signal for each site (Δtimeabdominal and 136 

Δtimetransverse). aPWV was then calculated as aPWV = (physical distance between the two 137 

probes) / (Δtimeabdominal-Δtimetransverse) and reported in cm/sec.  138 
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 To examine the potential role of changes in blood pressure to treatment-related 139 

differences in aPWV, we assessed systolic and diastolic blood pressure at baseline and following 140 

4 weeks of MitoQ or normal drinking water consumption using the CODA non-invasive tail-cuff 141 

system as previously described (11, 28). The pressure measurements from 20 collection cycles 142 

(following 5 acclimation cycles) on each of three consecutive days were averaged for each 143 

mouse at each timepoint.     144 

 145 

Ex-vivo Assessment of Arterial Stiffness: Intrinsic Mechanical Stiffness 146 

Following all in vivo assessments, mice were euthanized and aortas were harvested for 147 

measurements of ex-vivo intrinsic mechanical stiffness and protein expression. Two 1-mm aortic 148 

rings from the thoracic region (dissected free of surrounding connective tissue) were used to 149 

assess intrinsic aortic stiffness via wire myography, as described previously by our laboratory (6, 150 

10, 14, 28). Aortic rings were loaded into heated myograph chambers (DMT, Inc.) with calcium-151 

free phosphate buffered saline. Following three cycles of pre-stretching, ring diameter was 152 

increased to achieve 1mN force and then incrementally stretched by ~10% every 3 minutes until 153 

failure. The force corresponding to each stretching interval was recorded and used to calculate 154 

stress and strain, defined as follows:  155 

Strain (λ) = Δ d/d(i)   156 

d= diameter; d(i)= initial diameter 157 

Stress (t) = λL/2HD  158 

L= one-dimensional load; H= wall thickness determined by histology; D= vessel length  159 

The slope of the stress-strain curve was used to determine the elastic modulus in the collagen-160 

dominant and elastin-dominant regions of the curve, as described below. 161 
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 162 

 163 

Collagen Elastic Modulus 164 

When aortic rings are subjected to stress-strain testing, the region of the stress-strain 165 

curve corresponding to the highest forces represents the stretching of predominately collagen 166 

fibers (25, 47). The elastic modulus of the collagen-dominant region was determined as the slope 167 

of the linear regression fit to the final four points of the stress-strain curve, as described 168 

previously (6, 14, 28). See Figure 2 for representative stress-strain curve.  169 

 170 

Elastin Elastic Modulus 171 

During stress-strain testing in aortic rings, the region of the stress-strain curve 172 

corresponding to the stretching of exclusively elastin fibers is a lower-force region prior to 173 

collagen fiber engagement that can be identified as the portion of the stress-strain curve where 174 

curvature (determined from the second derivative of the stress-strain curve) is approximately 175 

zero; the engagement of collagen fibers is indicated by an elevation in the curvature (non-zero 176 

second derivative) (25). To determine the boundaries of the elastin region of our stress strain 177 

curves, we calculated the roots of the second derivative of a 7
th

 order polynomial fit to the data 178 

(R
2
>0.99). The first root was considered the boundary between the very low-force region and the 179 

elastin region, and the second root was considered the boundary between the elastin region and 180 

the onset of collagen fiber engagement (25). The elastic modulus of the elastin region was then 181 

determined as the slope of the linear regression fit to the stress-strain data between the two 182 

points.  See Figure 2 for representative stress-strain curve.  183 

 184 
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 185 

 186 

Aortic Protein Expression 187 

Aortic expression of structural proteins collagen-I and α-elastin was determined in aortic 188 

homogenates by standard Western blotting techniques and immunohistochemistry (IHC) in aortic 189 

sections, as previously described (6, 11, 28). Aortic protein expression of inflammatory 190 

cytokines was determined using a custom multiplex ELISA (Ciraplex, Aushon Biosystems, 191 

Billerica, MA, USA), as previously described (27, 29). 192 

Prior to Western blotting and cytokine multiplex, aortas were homogenized in radio-193 

immunoprecipitation assay lysis buffer and protein concentration determined using the Pierce 194 

BCA assay kit (ThermoFisher Scientific, USA). 195 

For Western blotting, 15 µg of aortic protein were loaded onto 4-12% polyacrylamide 196 

gels and then transferred onto nitrocellulose membranes (Criterion System; Bio-Rad, Hercules, 197 

CA, USA). Membranes were incubated (overnight at 4ºC) with primary antibodies: collagen-I 198 

(1:1000, Millipore Corp.), α-elastin (1:200, Abcam, Inc., Cambridge, MA, USA), and 199 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Cell Signaling, 1:1000, normalizer). 200 

Proteins were visualized on a digital acquisition system (ChemiDoc-It, UVP, Upland, CA, USA) 201 

using chemilluminescence with horseradish peroxidase-conjugated secondary antibodies 202 

(Jackson ImmunoResearch, Westgrove, PA, USA) and ECL substrate (Pierce, Rockford, IL, 203 

USA). Relative intensity was quantified using ImageJ software and normalized to GAPDH 204 

intensity (obtained from the same blots after stripping) and then expressed as a ratio of the mean 205 

intensity of the young control group.  206 
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For cytokine multiplex, 15 ug of aortic lysate were loaded into microplate wells and 207 

assay was performed according to manufacturer instructions. The multiplex plates were custom 208 

designed (custom Ciraplex, Aushon) for detection of the following murine pro-inflammatory 209 

cytokines: interleukins 1 beta, 6, and 10 (IL-1β, IL-6, and IL-10), and interferon gamma (IFN-γ). 210 

Images were captured using Cirascan imager (Aushon) and results were analyzed with Cirasoft 211 

software (Aushon). If levels of a given cytokine were undetectable (e.g., fell below the limit of 212 

detection of the assay), samples were excluded from the analysis.   213 

For IHC, ~ 1 mm thoracic aortic segments were frozen in OCT compound in liquid 214 

nitrogen-cooled isopentane prior to sectioning.  Aortic sections (7 µm) were fixed in acetone, 215 

washed in Tris buffer, and stained using the Dako EnVision+ System-HRP-DAB kit, as 216 

performed previously in our laboratory (11). Sections were incubated for 1 h at 4°C with primary 217 

antibodies for α-elastin (1:50, Abcam Inc.) or collagen-I (1:200, Millipore) and then incubated 218 

with the labelled polymer secondary for 30 minutes. Slides were dehydrated and cover-slipped 219 

after a 10-minute or 1-minute exposure to diaminobenzidine (elastin and collagen, respectively). 220 

Stained aortic sections were imaged using a Nikon Eclipse TS100 photomicroscope 221 

under identical conditions. Quantification of the integrated density of the stain was performed 222 

using ImageJ software by a single investigator blinded to the group assignment of each sample. 223 

Collagen-I expression was assessed in the whole artery sections, comprising both the medial and 224 

adventitial layers, whereas elastin expression was assessed in the medial layer, the primary site 225 

of age-related changes in elastin expression (9, 10). Integrated density values from 4 sections 226 

were averaged to provide a single value for each protein per aorta, which are expressed relative 227 

to the mean of the young control group.  228 

 229 
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Statistical Analysis 230 

All statistical analyses were performed using SPSS 23.0 software (Armonk, NY, USA). 231 

Data were first assessed for outliers and normality/homogeneity of variance. Between-group 232 

differences in morphological characteristics and aortic protein expression (Western blot, 233 

immunohistochemistry, multiplex ELISA) were determined using one-way analysis of variance. 234 

Between-group differences in elastic modulus (collagen and elastin regions) were determined 235 

using a linear mixed model with age (young versus old) and treatment (control versus MitoQ) as 236 

factors, whereas within-group differences in aPWV and blood pressure were examined using a 237 

linear mixed model that also included a repeated factor (pre- versus post- intervention period). 238 

When a significant main effect was observed, Fisher’s least significant difference post-hoc tests 239 

were performed to determine specific pair-wise differences.  240 

 241 

RESULTS 242 

MitoQ consumption across the 4-week treatment period was similar to our previous 243 

report and not different between young and old mice (~1 mmol/day; (15)). Select morphological 244 

characteristics and blood pressure are shown in Table 1. Consistent with our previous study (15), 245 

4 weeks of MitoQ treatment did not influence overall morphology; although there were age-246 

associated differences in body mass, heart mass, and quadriceps mass, these were not different 247 

between mice receiving MitoQ versus normal drinking water. There were no age- or treatment-248 

related differences in aortic diameter or systolic and diastolic blood pressure.  249 

 250 

MitoQ treatment reverses aortic stiffening in old mice 251 
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At baseline, aPWV was significantly higher in old compared to young mice and aPWV 252 

was not significantly different from baseline to post-intervention in either young or old control 253 

mice receiving normal drinking water (Figure 1). In contrast, 4 weeks of MitoQ treatment 254 

significantly decreased aPWV in old mice to levels similar to young mice following the 255 

intervention period. MitoQ treatment had no effect on aPWV in young mice. These results 256 

indicate that 4 weeks of MitoQ treatment specifically reverses aortic stiffening in old mice.    257 

 258 

Potential mechanisms underlying the de-stiffening effects of MitoQ treatment in old mice 259 

In our previous study employing MitoQ treatment in old mice (15), the same dose and 260 

duration of treatment as used in the present study normalized the age-related elevation in aortic 261 

whole-cell and mitochondria-specific superoxide production, indicating a profound antioxidant 262 

effect of MitoQ in arteries.  To investigate further how decreased levels of mtROS in aging 263 

arteries may contribute to the de-stiffening effects of MitoQ, in the present study we investigated 264 

key mechanisms that have been implicated downstream of mitochondrial oxidative stress in the 265 

development of age-related arterial stiffening, namely changes in arterial structural proteins and 266 

inflammation.  267 

 268 

Ex-vivo aortic stiffness—collagen- and elastin- mediated mechanical properties of aortic rings 269 

The elastic modulus of the collagen region of stress-strain curves was significantly 270 

greater in old control versus young control mice (Figure 3A), whereas the elastic modulus of the 271 

elastin region was significantly lower in old control compared to young control mice (Figure 272 

3B), indicating an age-related increase in intrinsic arterial stiffness mediated by increased 273 

collagen and reduced elastin. MitoQ treatment had no effect on the collagen elastic modulus, 274 
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such that the values in old and young MitoQ-treated mice were not significantly different from 275 

old and young control mice, respectively. However, in arteries from old mice treated with 276 

MitoQ, the elastic modulus in the elastin region was significantly greater than that of old control 277 

mice but remained significantly lower than the elastin elastic modulus of young MitoQ-treated 278 

mice, indicating attenuation of the age-related decline in elastin.  279 

 280 

Aortic expression of structural proteins 281 

Consistent with our intrinsic mechanical stiffness observations, aortic collagen protein 282 

expression was significantly greater (Figure 4A and B) and aortic elastin expression was lower 283 

(Figure 4C and D, p=0.074 and 0.086, respectively) in old control versus young control mice. 284 

MitoQ treatment did not affect aortic collagen content, such that collagen expression in old 285 

MitoQ-treated mice was not significantly different than that of old control mice, whether 286 

assessed in whole artery homogenate by Western blot or in aortic sections via IHC. When 287 

measured in whole artery homogenate by Western blot, aortic elastin levels in old MitoQ-treated 288 

mice were intermediate between (and not significantly different from) those of either young 289 

control or old control mice. However, when assessed via IHC in the medial layer of aortas—the 290 

primary site of age-related elastin degradation (9, 10)—elastin content in old MitoQ-treated mice 291 

was greater than that of old control mice (p=0.07).  292 

Together with our observations of intrinsic mechanical properties, these results suggest 293 

that the reduction in in vivo aortic stiffening in old mice following MitoQ treatment was 294 

mediated not by effects on aortic collagen, but possibly by partial preservation of elastin.   295 

 296 

Aortic inflammatory cytokine expression 297 
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Aortic expression of pro-inflammatory cytokines IL-6, IL-10, and IFN-γ (Figure 5 A-C) 298 

was significantly higher, and expression of IL-1β (Figure 5D) tended to be higher, in old 299 

compared to young control mice, consistent with previous investigations demonstrating elevated 300 

levels of arterial cytokines with aging and association with vascular dysfunction (3, 27, 29, 44). 301 

Cytokine levels were not affected by 4 weeks of MitoQ treatment (p>0.05 OMQ vs. OC for all 302 

cytokines), suggesting that the de-stiffening effects of MitoQ were not mediated by changes in 303 

these aortic cytokines. However, these results do not preclude the possibility that MitoQ 304 

treatment may have influenced other components of inflammatory signaling pathways. 305 

 306 

DISCUSSION 307 

The primary, novel finding of this study is that 4 weeks of treatment with the 308 

mitochondria-targeted antioxidant MitoQ in old mice completely reverses the age-associated 309 

increase in aortic stiffness, assessed in vivo as aPWV.  Our observation that MitoQ treatment 310 

decreases aortic stiffness in old mice extends previous work with general antioxidant compounds 311 

and adds to the evidence from transgenic and disease models that specifically implicates 312 

mitochondrial oxidative stress as a key contributor to aortic stiffening. A previous pre-clinical 313 

intervention study from our laboratory employing the general antioxidant compound TEMPOL 314 

established oxidative stress as a key mechanism underlying age-related aortic stiffening (12), and 315 

other strategies that decrease arterial oxidative stress also ameliorate arterial stiffness (11, 13, 14, 316 

28, 49). Recent work with genetic and disease models indicates that mitochondria are a major 317 

source of the vascular oxidative stress contributing to arterial stiffness. Mice with genetic 318 

deletion of mitochondrial antioxidant enzyme SOD2, a model of excess mitochondrial oxidative 319 

stress, demonstrate exacerbation of age-related aortic stiffening (61), and progression of age-320 
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related arterial stiffening is unaffected in mice with genetic deletion of cytosolic pro-oxidant 321 

NADPH oxidase (NOX1/2) but intact mitochondria-localized NADPH oxidase (NOX4) (55). 322 

Our finding here that in vivo treatment with the mitochondria-targeted antioxidant MitoQ in old 323 

mice decreases aortic stiffness provides further support for mitochondrial oxidative stress as a 324 

key mediator of arterial dysfunction with primary aging. Most importantly, our results extend 325 

previous observations from genetic and disease models (55) by demonstrating that a 326 

pharmacological intervention targeting excessive mtROS production reverses aortic stiffening in 327 

the setting of primary aging in mice, thus establishing an essential platform for translation to 328 

humans. 329 

To gain initial mechanistic insight into the de-stiffening effects of MitoQ treatment, we 330 

assessed intrinsic mechanical stiffness ex-vivo in aortic rings and examined both the collagen- 331 

and elastin-predominant regions of the stress-strain curves.  In contrast to previous studies 332 

showing that the de-stiffening effects of late-life interventions, including those associated with 333 

decreased whole cell and mitochondrial oxidative stress, are primarily mediated by decreases in 334 

arterial collagen content (9, 11, 12, 14, 37, 55), we observed that MitoQ treatment had no 335 

significant effect on the collagen region elastic modulus or aortic collagen expression but instead 336 

attenuated the age-related decline in aortic elastin region elastic modulus and tended to preserve 337 

elastin expression. Our finding of partial elastin preservation with MitoQ treatment is consistent 338 

with the observations that heterozygous SOD2 deficient mice, a model of excess mtROS, show 339 

marked exacerbation of age-associated declines in arterial elastin content (61), and that lifelong 340 

caloric restriction, a setting of lower mtROS (26), preserves arterial elastin content with aging 341 

(8). Collectively, our results suggest that decreasing mitochondrial oxidative stress may at least 342 

partially preserve elastin content in the aorta, contributing to lower levels of stiffness. 343 
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Future studies are warranted to elucidate the mechanisms by which decreased 344 

mitochondrial oxidative stress (via MitoQ treatment) may preserve aortic elastin content in 345 

aging. One possible link may be mtROS-mediated regulation of enzymes that govern elastin 346 

turnover, including matrix metalloproteinases (MMP; 36, 62)—changes in the activity of which 347 

are associated with arterial stiffening in both mouse models and human aging (32, 33, 58). For 348 

example, increased levels of MMP-2, a key enzyme involved in elastin degradation (9, 17, 59), 349 

accompany the loss of arterial elastin in heterozygous SOD2 knockout mice (61). Further, 350 

primary aging in preclinical models is associated with increased arterial MMP-2 expression (9, 351 

59) and elevated aortic MMP-2 levels are also observed in human aging (33). Collectively, these 352 

previous studies suggest that age-related increases in mtROS may contribute to arterial elastin 353 

degradation via increased MMP-2 activity, and that targeting excess mtROS, e.g., via MitoQ 354 

treatment, may attenuate elastin degradation, preserving elastin content in large elastic arteries 355 

and contributing to lower levels of stiffness. Although our results do not support a role for MitoQ 356 

in decreasing total arterial collagen content, future studies could examine not only arterial 357 

content of this key structural protein, but also changes in collagen fiber orientation (17) and 358 

formation of cross-links among proteins, both of which have the potential to influence arterial 359 

stiffness (9, 23, 62).  360 

It is also important to consider mechanisms other than preservation of aortic elastin 361 

content that may have contributed to the dramatic decrease in aortic stiffness we observed with 362 

MitoQ treatment in old mice. In addition to structural changes, age-related arterial stiffening is 363 

also mediated by hemodynamic factors (including age-related reductions in vascular endothelial 364 

function) and increased vasomotor tone (17, 24, 62). Although our data indicate that changes in 365 

resting blood pressure did not contribute to the effects of MitoQ treatment, it is plausible that 366 
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some of the de-stiffening we observed in old mice was due to improvements in vascular 367 

endothelial function. Our previous study (15) demonstrated that MitoQ treatment increases 368 

endothelium-dependent dilation and nitric oxide bioavailability in old mice, both of which are 369 

important direct (e.g., effects on pulse pressure and smooth muscle tone) and indirect (e.g., nitric 370 

oxide, regulation of structural protein turnover) mediators of large elastic artery stiffness in vivo 371 

(17, 32, 38, 60, 62).  372 

Aortic inflammatory cytokine levels were significantly elevated in aortic tissue of old 373 

versus young mice, consistent with previous studies (27, 29, 44). Chronic low-grade arterial 374 

inflammation with aging, primarily mediated by NFκ-B activation, can be triggered by excessive 375 

oxidative stress—including that derived from mitochondria—in a reciprocally-reinforcing 376 

process that serves to impair arterial function (3, 29, 54). Although there is some evidence for a 377 

role of mtROS in mediating arterial inflammation and consequent dysfunction in 378 

atherosclerosis/disease models (31, 55), our observations in the present study do not support an 379 

anti-inflammatory role for MitoQ in reversing arterial stiffening in primary aging. Following 4 380 

weeks of MitoQ treatment, there was no difference between old control and old MitoQ-treated 381 

aortic cytokine levels, despite the pronounced reversal of arterial stiffening in the latter. This 382 

suggests that the de-stiffening effects of MitoQ were mediated by a mechanism other than 383 

normalization of the aortic cytokines we assessed here. However, it remains possible that MitoQ 384 

treatment influenced other components of inflammatory signaling and future studies are 385 

warranted to investigate these possibilities.  386 

Although the present study investigated the therapeutic efficacy of MitoQ in the setting 387 

of existing age-related aortic stiffness, it would also be of clinical relevance to determine 388 

whether targeting/decreasing mtROS earlier in life prior to the onset of aortic stiffening could 389 
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prevent or slow the progression of pathological aortic remodeling and consequent cardiovascular 390 

sequelae. Given that excess mtROS are implicated as a key factor in the pathogenesis of 391 

numerous age-related conditions, including vascular dysfunction (1, 4, 5), it is possible that 392 

limiting an age-related increase in mtROS via treatment in early or mid-life could prevent aortic 393 

stiffening. This possibility is supported by work from disease and senescence models indicating 394 

that mitochondria-targeted therapeutics initiated prior to or at the onset of experimental insult or 395 

injury can prevent development or slow progression of dysfunction (45, 51, 52). Because low, 396 

physiological levels of mtROS are critical for the maintenance of cellular homeostasis, any 397 

optimal long-term therapeutic strategy would likely need to maintain mtROS at physiological 398 

levels rather than eliminate them completely.   399 

 400 

Conclusion 401 

In conclusion, the present study demonstrates that late-life treatment with a mitochondria-402 

targeted antioxidant, MitoQ, effectively reverses aortic stiffening in the setting of primary aging. 403 

Our results suggest that this effect is mediated at least partially by attenuation/reversal of the 404 

age-related reduction in aortic elastin content, but additional work is needed to conclusively 405 

determine the mechanism(s) underlying the de-stiffening effect of MitoQ. Importantly, these 406 

results indicate that mitochondria-targeted antioxidants may represent a novel, promising 407 

therapeutic strategy for decreasing aortic stiffness, and potentially decreasing the risk of multiple 408 

chronic age-associated conditions in humans. 409 
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 624 

Table 1. General morphological characteristics and blood pressure 625 

Data are presented as means ± SD. YC, young control mice; OC, old control mice; YMQ, young 626 

MitoQ-treated mice; OMQ, old MitoQ-treated mice; BP, blood pressure; Pre, baseline 627 

assessment (prior to treatment period); Post, assessment following 4-week treatment period with 628 

MitoQ or normal drinking water.  629 

* p<0.05 vs. YC and YMQ  630 

 631 

 632 

  633 

  YC OC YMQ OMQ 

Body mass (g) 25.1 ± 1.2 29.4 ± 2.7* 26.0 ± 1.4 28.5 ± 3.0* 

Heart mass (mg) 128 ± 11 175 ± 22* 124 ± 9 164 ± 20* 

Liver mass (g) 1.34 ± 0.06 1.41 ± 0.16 1.34 ± 0.18 1.37 ± 0.38 

Quadriceps mass (mg) 163 ± 28 138 ± 27* 175 ± 29 143 ± 27* 

Visceral fat mass (mg) 306 ± 70 302 ± 89 256 ± 71 229 ± 118 

Aorta diameter (µm) 749 ± 72 780 ± 47 789 ± 77 785 ± 43 

Systolic BP (mmHg) Pre: 105.1 ± 10.1 Pre: 101.3 ± 11.7 Pre: 101.2 ± 6.7 Pre: 93.5 ± 10.8 

Post: 101.4 ± 12.9 Post: 94.9 ± 5.0 Post: 98.2 ± 10.8 Post: 101.0 ± 4.4 

Diastolic BP (mmHg) Pre:73.3 ± 11.5 Pre: 72.8 ± 11.0 Pre: 73.1 ± 4.7 Pre: 66.3 ± 4.2 

Post: 71.9 ± 11.3 Post: 67.0 ± 4.6 Post: 74.1 ± 9.3 Post: 71.9 ± 10.1 
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Figure 1. MitoQ treatment reverses age-related aortic stiffness in mice.  634 

Aortic pulse-wave velocity (aPWV) was assessed in young and old mice before (Baseline) and 635 

following (Post) consumption of normal drinking water (YC and OC) or MitoQ treatment (YMQ 636 

and OMQ) for 4 weeks. n=8-11/group; error bars represent SEM. 637 

* p<0.05 vs. YC and YMQ; ** p<0.05 vs. OC and OMQ baseline  638 

 639 

Figure 2. Representative stress-strain curve for determination of ex-vivo intrinsic 640 

mechanical stiffness of aortic rings. 641 

 642 
Aortic rings were incrementally stretched until tissue failure, as described in the Methods 643 

section, and the tension (stress, kPa) corresponding to each stretch was plotted against strain 644 

(change in length relative to resting length) to generate a stress-strain curve. The elastic modulus 645 

of the region of the curve corresponding to collagen fiber stretching was determined as the slope 646 

of the line fit to the final 4 points on the curve prior to tissue failure (Collagen Region Elastic 647 

Modulus). The region of the curve corresponding to elastin fiber stretching was considered to lie 648 

between the very low-force region and the onset of collagen fiber engagement, which were 649 

identified as the first and second roots, respectively, of a 7
th

 order polynomial fit to the stress-650 

strain curve (25). The elastic modulus of the elastin region of the curve was determined as the 651 

slope of the line fit between these boundaries (Elastin Region Elastic Modulus).   652 

 653 

Figure 3. MitoQ treatment attenuates the age-related decline in elastin-mediated intrinsic 654 

mechanical properties but has no effect on collagen-mediated intrinsic mechanical stiffness. 655 

 656 

A: Collagen region elastic modulus of aortic segments from young and old control (YC and OC) 657 

and young and old MitoQ-treated (YMQ and OMQ) mice.  658 

B: Elastin region elastic modulus of aortic segments from YC, OC, YMQ and OMQ mice. 659 

n=8-11/group; error bars represent SEM.  660 

* p<0.05 vs. YC and YMQ 661 

# p<0.05 vs. OC and YMQ 662 

 663 

 664 

 665 

 666 
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Figure 4. MitoQ treatment attenuates the age-related reduction in aortic elastin expression 667 

but has no effect on aortic collagen expression.  668 

 669 
A: Aortic collagen-I expression assessed by Western blot in aortic homogenates from young and 670 

old control (YC and OC) and young and old MitoQ-treated (YMQ and OMQ) mice. Expression 671 

levels are presented normalized to GAPDH expression and relative to the mean of the YC group 672 

(error bars represent SEM). Representative images, comprising 4 continuous lanes, are presented 673 

below mean data. The collagen-I and GAPDH images represent the same segment of the same 674 

blot. Any adjustments to the images were limited to changes in brightness and contrast made 675 

using Image J to optimize visualization, performed uniformly on the entire image. n=6/group 676 

* p<0.05 vs. YC 677 

B: Aortic collagen-I expression assessed by immunohistochemistry in whole aortic sections from 678 

YC, OC, YMQ and OMQ mice. Expression levels are presented relative to the mean of the YC 679 

group (error bars represent SEM). Representative images (whole sections and enlargements of 680 

the same sections) are presented to the right of the mean data. n=7-11/group 681 

* p<0.05 vs. YC 682 

C: Aortic elastin expression assessed by Western blot in aortic homogenates from young and old 683 

control (YC and OC) and young and old MitoQ-treated (YMQ and OMQ) mice. Expression 684 

levels are presented normalized to GAPDH expression and relative to the mean of the YC group 685 

(error bars represent SEM). Representative images, comprising 4 continuous lanes, are presented 686 

below mean data. The elastin and GAPDH images represent the same segment of the same blot. 687 

Any adjustments to the images were limited to changes in brightness and contrast made using 688 

Image J to optimize visualization, performed uniformly on the entire image. n=6/group 689 

^ p<0.074 vs. YC  690 

D: Aortic elastin expression assessed by immunohistochemistry in the medial layer of aortic 691 

sections from YC, OC, YMQ and OMQ mice. Expression levels are presented relative to the 692 

mean of the YC group (error bars represent SEM). Representative images (whole sections and 693 

enlargements of the same sections) are presented to the right of the mean data. n=8-11/group 694 

^ p=0.086 vs. YC; ^^ p=0.075 vs. OC 695 
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Figure 5. MitoQ treatment does not affect the age-related increase in aortic inflammatory 698 

cytokines. 699 

 700 
Expression of inflammatory cytokines A) interleukin-6 (IL-6, n=7-10/group), B) interleukin-10 701 

(IL-10, n=7-9/group), C) interferon-gamma (IFN-γ, n=7-10/group), and D) interleukin-1 beta 702 

(IL-1β, n=4-10/group) in aortic homogenates from young and old control (YC and OC) and 703 

young and old MitoQ-treated (YMQ and OMQ) mice. Sample sizes reflect all aortic 704 

homogenates for which cytokine levels were detectable; samples were excluded if cytokine 705 

levels were undetectable/below the limit of quantification of the assay. Error bars represent 706 

SEM.  707 

* p<0.05 vs. YC  708 

^ 0.10>p>0.05 vs YC (p =0.08, OC vs. YC; p =0.06, OMQ vs. YC).    709 
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