Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.
Supplement to: Manson JE, Cook NR, Lee I-M, et al. Marine $n-3$ fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. DOI: 10.1056/NEJMoa1811403

Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer

SUPPLEMENTARY APPENDIX

Contents

Title Page and Table of Contents 1-2
Members of the VITAL Research Group Steering Committee 3
Scientific Consultants. 3
Other Members of the VITAL Research Group 3
Data and Safety Monitoring Board. 4
Detailed Methods 5
Supplementary Tables
Table S1. Baseline Characteristics of the 25,871 Participants, According to Randomized Assignment to Marine Omega-3 Fatty Acids 10
Table S2. Participant-Reported Adherence with the Omega-3 and Placebo Study Capsules at Time Points over 5 Years 12
Additional Details on Subgroup Analyses 13
Table S3. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) for Major Cardiovascular Events and Total Myocardial Infarction According to Diabetes Status and Number of Cardiovascular Risk Factors at Baseline, Comparing Omega-3 Fatty Acids (n-3) and Placebo in Racial/Ethnic groups 14
Table S4. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) for Major Outcomes According to Baseline Fish Intake and Race/Ethnicity, Comparing Omega-3 Fatty Acids (n-3) and Placebo Groups. 15
Table S5. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) of Total Invasive Cancer Comparing Active Omega-3 Fatty Acids (n-3) and Placebo Groups, According to Baseline Characteristics 16
Table S6. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) of Total Mortality Comparing Active Omega- 3 Fatty Acids (n-3) and Placebo Groups, According to Baseline Characteristics 17
Table S7. Hazard Ratios (HR) and 95\% Confidence Intervals (Cl) for Safety and Adverse Events by Randomized Assignment to Omega-3 Fatty Acids (n-3) 19
Supplementary Figures
Figure S1. Flow Diagram of Enrollment in the Omega-3 Fatty Acid Component of the Trial. 20
Figure S2. Cumulative Incidence Rates of A) Expanded Cardiovascular Events, B) Total Myocardial Infarction, C) Total Stroke, and D) Cardiovascular Mortality, By Year of Follow-up in the Omega-3 Fatty Acidsand Placebo Groups21
Figure S3. Hazard Ratios of Total Myocardial Infarction by Subgroups, Comparing Omega-3 Fatty Acids($\mathrm{n}-3$) and Placebo groups.22

Members of the VITAL Research Group

VITAL Steering Committee:

JoAnn E. Manson (Chair), Julie E. Buring (Chair), Nancy R. Cook, I-Min Lee, William Christen, Shari S. Bassuk, Samia Mora, Heike Gibson, David Gordon, Trisha Copeland, Denise D’Agostino, Georgina Friedenberg, Claire Ridge, Vadim Bubes, Edward L. Giovannucci, Walter C. Willett (all at Brigham and Women's Hospital, Harvard Medical School, Boston; Drs. Manson, Buring, Cook, Lee, Giovannucci and Willett are also at the Harvard T.H. Chan School of Public Health).

Scientific consultants:

John Baron (University of North Carolina, Chapel Hill), Michael Holick (Boston Medical Center), Bruce Hollis (University of South Carolina).

Other Members of the VITAL Research Group:

(Brigham and Women's Hospital): Christine M. Albert, Diane Gold, Meryl LeBoff, Olivia Okereke, Aruna Pradhan, Howard Sesso, Wendy Chen, Paulette Chandler, J. Michael Gaziano, Olga Demler, Kathryn Rexrode, Karen Costenbader, John Forman, Erik Alexander, Sonia Friedman, Jeffrey Katz, Shumin Zhang, Jennifer Lin, Joseph Walter, Julie Duszlak, Kate Kalan, Jean MacFadyen, Natalya Gomelskaya, David Bates, Ara Sarkissian, Mary Breen, Yeulolani Andrade, Manickavasagar Vinayagamoorthy, Chunying Li, Eunjung Kim, Franco Giulianini, Gregory Kotler, Marty Van Denburgh, Rimma Dushkes, Yanyan Liu, Eduardo Pereira, Lisa Fields-Johnson, George Menjin, Lucy Liu, Lauren Girard, Scott Zeller, Naomi Riches, Katelyn Hasson, Ellen Bhang, Maria Revilla, Elena McCarthy, Alex Moran, Kristen Haise, Leah Arsenault, Philomena Quinn,

Sancia Grimes, Ivan Fitchorov, Kurt Schwerin, Shamikhah Curry, Annie Murray, Angela Zhang, Diana Walrond-Williams, Alison Weinberg, Chris Pfeffer, Margarette Haubourg, Viviane Nguyen, Henry Ouellette, Rolando Rodriguez, Tony Montgomery, Keith Morse, Vincent Guzman, Megan Perry, Sandra Weekes, Doug Smith, Allison Clar, Sara Curran, Yaneve Fonge, David Hibbert, Louisa Paine, Kelly Royce, Courtney Splaine, Jennifer McMahon, David Eldridge, Laura Hand, Kay Inandan, Meghan Rieu Werden, Harriet Samuelson, Andrea Hrbek, Megan Mele, Eileen Bowes, Mary Anne Ryan
(Massachusetts General Hospital, Boston): Carlos Camargo, Jacqueline Danik, Ravi Thadhani
(Vanderbilt University, Nashville): Thomas Wang
(Rush University Medical Center, Chicago): Raj C. Shah
(University of California, San Francisco): Michelle A. Albert
(Emory University): Carlos Kase
(Centers for Disease Control and Prevention, Vitamin D Standardization Program): Hubert Vesper and Julianne Botelho.

Data and Safety Monitoring Board (Voting Members): Nanette Wenger, MD (Chair); Lawrence S. Cohen, MD; Theodore Colton, ScD; Mark A. Espeland, PhD; Craig Henderson, MD; Alice H. Lichtenstein, ScD; and Rebecca A. Silliman, MD, PhD. Ex-officio members include Josephine Boyington, PhD, MPH; Rebecca Costello, PhD; Cindy Davis, PhD; Peter Greenwald, MD; Gabriela Riscuta, MD; and Harold Seifried, PhD.

SUPPLEMENTARY APPENDIX: DETAILED METHODS, TABLES, AND FIGURES

METHODS (details of study methods, omega-3 component)

Study Design

VITAL was a randomized, double-blind, placebo-controlled, 2×2 factorial trial of the benefits and risks of vitamin D_{3} (cholecalciferol, $2000 \mathrm{IU} / \mathrm{d}$) and marine omega-3 fatty acids ($1 \mathrm{~g} / \mathrm{d}$ fish oil capsule [Omacor], containing 840 mg of $\mathrm{n}-3$ FAs including eicosapentaenoic acid [EPA, 460 mg] + docosahexaenoic acid [DHA, $380 \mathrm{mg}]$) in the primary prevention of cardiovascular disease and cancer among 25,871 men aged ≥ 50 and women aged ≥ 55. Study details are described elsewhere. ${ }^{1,2}$ The omega-3 fatty acid dose was chosen because it was recommended by the American Heart Association for cardioprotection ${ }^{3}$ and demonstrated to be beneficial and to have minimal side effects in a secondary prevention population. ${ }^{4}$ The placebo capsule contained olive oil. Participants were recruited throughout the U.S., balanced by sex, and with a goal to enroll at least 5,000 African Americans. Eligible participants had no history of cancer (except non-melanoma skin cancer), myocardial infarction, stroke, transient ischemic attack, or coronary revascularization at enrollment and were required to forgo use of fish-oil supplements and to complete a 3-month placebo run-in phase. Safety exclusions included renal failure or dialysis, cirrhosis, fish allergy, anticoagulant use, or other serious conditions that would preclude participation. The recruitment flow diagram is presented in Figure S1 in the Supplementary Appendix. Randomization to n-3 fatty acids, vitamin D, both active agents, or both placebos took place from November 2011 to March 2014 and was computer generated within sex, race (African American vs. not) and 5-year age groups in blocks of eight. All participants provided written informed consent. Study pill-taking ended as planned on December 31, 2017, yielding a median treatment period of 5.3 years (range 3.8-6.1 years). The trial was approved by the institutional review board of Partners Health CareBrigham and Women's Hospital, Boston, and was monitored by an external Data and Safety Monitoring Board.

Baseline questionnaires collected data on risk factors for cardiovascular disease, cancer, and other conditions, and included a food frequency questionnaire that ascertained intake of fish and other foods.

Participants received follow-up questionnaires at 6 months and 1 year after randomization and annually thereafter to assess compliance with randomized treatments, use of nonstudy fish-oil supplements, development of major illnesses, updates on risk factors, and potential side effects of the interventions. Study capsules were mailed to participants with the questionnaires.

Baseline blood samples were collected during the run-in period from all willing individuals, including 16,956 randomized participants. Assays for plasma omega-3 index (EPA+DHA as a percent of total fatty acids ${ }^{5}$) were performed on samples by Quest Diagnostics using liquid chromatography-tandem mass spectrometry.

Study Endpoints

Primary endpoints were major cardiovascular events (composite of myocardial infarction, stroke, and cardiovascular mortality) and total invasive cancer. Secondary cardiovascular endpoints were expanded cardiovascular events (major cardiovascular events plus coronary revascularization [coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI)]) and individual components of major cardiovascular events. Additional cardiovascular events were total coronary heart disease (a composite of myocardial infarction, coronary revascularization, and coronary heart disease death), fatal myocardial infarction, fatal stroke, and stroke subtypes. Secondary cancer endpoints were incident colorectal, breast, and prostate cancers, and total cancer mortality. Participants reporting a relevant endpoint were asked to sign a release for medical records, which were then reviewed by an Endpoints Committee of physicians blinded to treatment assignment to confirm or disconfirm reports. Myocardial infarction and stroke were confirmed using established criteria. ${ }^{6,7}$ Coronary revascularization was confirmed by medical record review. Cardiovascular deaths were confirmed by convincing evidence of a cardiovascular event from available sources, including death certificates, hospital records, autopsy reports, and, for non-hospital deaths, observer accounts. Cancer was confirmed with histologic or cytologic data. ${ }^{8}$ Analyses include confirmed endpoints only.

For deaths reported by family members, the next-of-kin was asked for permission to obtain medical records and a copy of the death certificate. Alternatively, the latter was obtained from the state vital records bureau. The Endpoints Committee reviewed records to assign cause of death. If records were unavailable (or participants lost to follow-up), the National Death Index (NDI) Plus was searched to obtain an International Classification of Disease-coded cause of death based on death-certificate information. Deaths were defined using all sources.

Statistical Analysis

Treatment-effect analyses compared randomized interventions and were based on the intention-to-treat principle (all randomized participants were analyzed). The trial was designed to have $>85 \%$ power to detect observed hazard ratios (HR) of 0.80 and 0.85 for the primary cardiovascular and cancer endpoints, respectively. ${ }^{1}$ Initial analyses compared baseline characteristics of the study population by randomized treatment assignment using t-tests or chi-square tests as appropriate. Primary analyses compared the main effects of n-3 fatty acids on cardiovascular disease and cancer using Cox proportional hazards models controlling for age, sex, and randomization to vitamin D. Person-time was counted from randomization to the endpoint, to death, or to end of the trial on December 31, 2017. Cumulative incidence plots and interactions with time examined whether treatment effects varied over time. Prespecified analyses excluding events occurring during the first year and first two years of follow-up explored latent treatment effects. Compliance effects were estimated by censoring follow-up when participants stopped taking study capsules and/or began taking outside fish-oil supplements.

Possible variations in treatment effect by age, sex, concurrent randomization to vitamin D, baseline cardiovascular risk factors, and baseline fish intake and plasma omega-3 (EPA+DHA) index were specified a priori. Because vitamin D was also studied, treatment effects in racial/ethnic groups were of interest. We additionally collected information on aspirin and statin use as stratification variables. There was no control for multiple hypothesis testing, with no formal adjustment to the P values or confidence intervals. Thus, results for
secondary and exploratory outcomes, and for subgroups, should be interpreted with caution. Finally, potential side effects, including gastrointestinal symptoms and bleeding risks, in the randomized groups were compared.

References:

1. Manson JE, Bassuk SS, Lee IM, Cook NR, Albert MA, Gordon D, Zaharris E, Macfadyen JG, Danielson E, Lin J, Zhang SM, Buring JE. The VITamin D and OmegA-3 TriaL (VITAL): Rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials. 2012;33:159-171
2. Bassuk SS, Manson JE, Lee IM, Cook NR, Christen WG, Bubes VY, Gordon DS, Copeland T, Friedenberg G, D'Agostino DM, Ridge CY, MacFadyen JG, Kalan K, Buring JE. Baseline characteristics of participants in the VITamin D and OmegA-3 TriaL (VITAL). Contemp Clin Trials. 2016;47:235-243
3. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747-2757
4. GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet. 1999;354:447-455
5. Harris WS, Von Schacky C. The omega-3 index: A new risk factor for death from coronary heart disease? Preventive Medicine. 2004;39:212-220
6. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Circulation. 2012;126:2020-2035
7. Adams HP, Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE, 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35-41
8. Fritz AG, Percy C, Jack A, Shanmugaratham K, Sobin LH, Parkin MD, Whelan S. International Classification of Diseases for Oncology (ICD-O), Third Edition. Geneva: World Health Organization; 2000.

Table S1. Baseline Characteristics of the 25,871 Participants, According to Randomized Assignment to Marine Omega-3 Fatty Acids ${ }^{\text {a }}$

Baseline Characteristic	All Participants	Omega-3 Fatty Acids	
		Active	Placebo
N	25,871	12,933	12,938
Sex, \% female	13,085 (50.6)	6,547 (50.6)	6,538 (50.5)
Mean age \pm SD, years	67.1 ± 7.1	67.2 ± 7.1	67.1 ± 7.1
Age group, years, \%			
50-54	977 (3.8)	488 (3.8)	489 (3.8)
55-64	8,871 (34.3)	4,431 (34.3)	4,440 (34.3)
65-74	12,705 (49.1)	6,352 (49.1)	6,353 (49.1)
≥ 75	3,318 (12.8)	1,662 (12.9)	1,656 (12.8)
Race/ethnicity, \%			
Non-Hispanic White	18,046/25,304 (71.3)	9,044/12,653 (71.5)	9,002/12,651 (71.2)
African American	5,106/25,304 (20.2)	2,549/12,653 (20.1)	2,557/12,651 (20.2)
Hispanic (not African American)	1,013/25,304 (4.0)	491/12,653 (3.9)	522/12,651 (4.1)
Asian/Pacific Islander	388/25,304 (1.5)	200/12,653 (1.6)	188/12,651 (1.5)
Native American or Alaskan Native	228/25,304 (0.9)	120/12,653 (0.9)	108/12,651 (0.9)
Other	523/25,304 (2.1)	249/12,653 (2.0)	274/12,651 (2.2)
Mean body mass index \pm SD, $\mathrm{kg} / \mathrm{m}^{2}$	28.1 ± 5.7	28.1 ± 5.7	28.1 ± 5.8
Hypertension, treated with medication, \%,	12,791/25,698 (49.8)	6,338/12,853 (49.3)	6,453/12,845 (50.2)
Cholesterol-lowering medication (current use), \%	9,524/25,428 (37.5)	4,788/12,707 (37.7)	4,736/12,721 (37.2)
Diabetes, \%	3,549/25,828 (13.7)	1,799/12,912 (13.9)	1,750/12,916 (13.5)
Current smoking, \%	1,836/2,5485 (7.2)	920/12,739 (7.2)	916/12,746 (7.2)
Any alcohol use, \% ${ }^{\text {b }}$	17,443/25,437 (68.6)	8,759/12,728 (68.8)	8,684/12,709 (68.3)
Current regular aspirin use, \%b	11,570/25,497 (45.4)	5,771/12,745 (45.3)	5,799/12,752 (45.5)
Current postmenopausal	1,483/12,811 (11.6)	735/6,400 (11.5)	748/6,411 (11.7)

hormone use, \% (women only)			
Current use of multivitamins, \%	$11,406 / 25,439(44.8)$	$5,661 / 12,726(44.5)$	$5,745 / 12,713(45.2)$
Intake of foods related to omega-3 fatty acids, mean \pm SD			
Dark-meat fish, servings/week	1.05 ± 1.84	1.05 ± 1.93	1.04 ± 1.76
Other fish and seafood, servings/week	1.11 ± 2.32	1.11 ± 2.36	1.11 ± 2.29
Plasma EPA, \%, median [IQR] ${ }^{\text {c }}$	$0.50[0.40-0.70]$	$0.50[0.40-0.70]$	$0.50[0.40-0.70]$
Plasma DHA, \%, median [IQR] ${ }^{\text {c }}$	$1.90[1.50-2.40]$	$1.90[1.50-2.40]$	$1.90[1.50-2.40]$

${ }^{\text {a Abbbreviations: }}$ SD = standard deviation; BMI = body mass index; EPA = eicosapentaenoic acid;
DHA = docosahexaenoic acid; IQR = interquartile range.
${ }^{\mathrm{b}}$ At least monthly.
${ }^{\mathrm{C}} \mathrm{N}=15,527$ with measured values for EPA and 15,534 for DHA.
For body mass index, data were missing for 2.4% of the participants. For dietary factors, data were missing for 1.7% to 2.7% of participants.
There were no significant differences in the baseline characteristics between the groups.

Table S2. Participant-Reported Adherence with the Omega-3 and Placebo Study Capsules (percent of capsules taken) at Time Points over 5 Years.
A. Among those answering the compliance question by questionnaire:

		Omega-3		Placebo	
Time	N	Mean	(SD)	Mean	(SD)
6 Months	24108	92.4	(16.8)	92.5	(16.4)
1 Year	24211	89.7	(21.0)	90.2	(20.1)
2 Years	23432	87.0	(25.5)	87.6	(24.7)
3 Years	22630	86.3	(26.9)	86.4	(26.4)
4 Years	21217	86.4	(26.7)	86.5	(26.4)
5 Years	13962	85.7	(27.9)	86.2	(27.0)

B. Including nonrespondents to questionnaires and assuming noncompliance among all nonrespondents:

		Omega-3		Placebo	
Time	N	Mean	(SD)	Mean	(SD)
6 Months	25830	87.8	(25.9)	87.8	(25.8)
1 Year	25751	86.3	(26.9)	86.6	(26.4)
2 Years	25576	82.7	(31.2)	82.9	(31.1)
3 Years	25373	81.2	(33.0)	81.2	(32.8)
4 Years	24616	79.0	(35.2)	79.4	(34.7)
5 Years	16920	75.8	(37.9)	75.7	(37.9)

Additional Details on Subgroup Analyses

In subgroup analyses, baseline dietary fish intake modified the n -3 intervention effect on major cardiovascular events (Fig. 2) and total myocardial infarction (Supplementary Appendix Fig. S3), with nominally significant reductions of 19% and 40%, respectively, in participants with below-median intake (<1.5 servings per week) but no reductions in those with higher intake (nominal p-interaction<0.05 for both). The HR for myocardial infarction among those who ate fish less than once per month was 0.43 (0.21-0.91). For major cardiovascular events, no other significant interactions were observed. For myocardial infarction, however, race/ethnicity also modified the treatment effect, with a 77% reduction among African Americans (HR=0.23 [0.11-0.47]) and smaller reductions in other racial/ethnic groups (nominal p-interaction by race=0.001) (Fig. S3). African Americans also had reductions in coronary revascularization (HR=0.51 [0.28-0.92]) and total coronary heart disease ($\mathrm{HR}=0.47$ [0.29-0.75]) with $\mathrm{n}-3$ fatty acids. For myocardial infarction, treatment-associated reductions were also observed in participants with comorbidities and a larger number of traditional risk factors (nominal pinteraction=0.047) (Fig. S3). Treatment-associated benefits were more apparent in African Americans than in non-Hispanic whites across all cardiovascular risk factor strata, including among those with diabetes (HR=0.06 [0.01-0.49] in African Americans vs. $\mathrm{HR}=0.88$ [0.43-1.80] in non-Hispanic whites, nominal p-interaction $=0.018$) (Supplementary Appendix, Table S3). For major cardiovascular events, treatment-associated reductions were greater in those with low baseline fish intake in both racial/ethnic groups (Table S4). For myocardial infarction, treatment-associated reductions among African Americans were observed irrespective of baseline fish intake, but non-Hispanic whites benefited from supplementation only if fish consumption was low (Table S4). The plasma omega-3 index did not significantly modify the intervention's effects. Analyses that censored for nonadherence did not materially change results ($\mathrm{HR}=0.91$ [0.78-1.07] for major cardiovascular events and $H R=0.74$ [0.58-0.95] for myocardial infarction in the overall cohort).

Table S3. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) for Major Cardiovascular Events and Total Myocardial Infarction According to Diabetes Status and Number of Cardiovascular Risk Factors at Baseline, Comparing Omega-3 Fatty Acids (n-3) and Placebo in Racial/Ethnic Groups

		Major Cardiovascular Events				Total Myocardial Infarction			
		No. of Events		HR (95\%CI)	Interaction P-value	No. of Events			Interaction P-value
Participants with Diabetes ${ }^{\text {a }}$	Total	n-3	Placebo			n-3	Placebo	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{Cl}) \end{gathered}$	
Race	2387				0.17				0.018
Non-Hispanic Whites	1449	33	32	$\begin{gathered} 1.04 \\ (0.64-1.69) \end{gathered}$		14	16	$\begin{gathered} 0.88 \\ (0.43-1.80) \end{gathered}$	
African Americans	938	17	27	$\begin{gathered} 0.60 \\ (0.33-1.11) \end{gathered}$		1	15	$\begin{gathered} 0.06 \\ (0.01-0.49) \end{gathered}$	

Total Number of CVD Risk Factors ${ }^{\text {b }}$

Non-Hispanic Whites	$\mathbf{1 8 0 4 6}$				$\mathbf{0 . 8 8}$				$\mathbf{0 . 8 2}$
No Risk Factors	5896	70	70	0.97 $(0.69-1.35)$		34	35	0.95	$(0.59-1.53)$

African Americans	5106				$\mathbf{0 . 9 4}$				$\mathbf{0 . 1 7}$
No Risk Factors	1054	7	11	0.62		2	3	0.65	
1 Risk Factor	1857	20	25	$(0.24-1.59)$ 0.83 $(0.46-1.50)$		3	11	$0.11-3.89)$	
2 or More Risk Factors	2195	35	47	0.72 $(0.47-1.12)$		4	25	$0.08-0.99)$	

${ }^{\text {a }}$ Reported diabetes treated with medication.
${ }^{\text {b }}$ Number of traditional cardiovascular disease risk factors (smoking, diabetes, hypertension, high cholesterol, parental history of premature myocardial infarction).
From Cox regression models controlling for age, sex, and vitamin D randomization group (intention-to-treat analyses). Analyses have not been adjusted for multiple comparisons.

Table S4. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) for Major Outcomes According to Baseline Fish Intake and Race/Ethnicity, Comparing Omega-3 Fatty Acids (n-3) and Placebo Groups

		Major Cardiovascular Events				Total Myocardial Infarction			
		No. of Events		$\begin{gathered} \text { HR } \\ (95 \% \mathrm{Cl}) \end{gathered}$	Interaction P-value	No. of Events		$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \end{gathered}$	Interaction P-value
Total Fish Consumption (servings/week)	Total N	n-3	Placebo			n-3	Placebo		
Total Cohort	25435				0.045				0.048
<median (1.5 servings/wk)	13514	189	232	$\begin{gathered} 0.81 \\ (0.67-0.98) \\ \hline \end{gathered}$		74	121	$\begin{gathered} 0.60 \\ (0.45-0.81) \\ \hline \end{gathered}$	
\geq median (1.5 servings/wk)	11921	189	176	$\begin{gathered} 1.08 \\ (0.88-1.32) \end{gathered}$		67	72	$\begin{gathered} 0.94 \\ (0.67-1.31) \\ \hline \end{gathered}$	
Non-Hispanic Whites	17851				0.043				0.016
<median (1.5 servings/wk)	9618	146	168	$\begin{gathered} 0.86 \\ (0.69-1.07) \\ \hline \end{gathered}$		64	88	$\begin{gathered} 0.71 \\ (0.51-0.98) \\ \hline \end{gathered}$	
\geq median (1.5 servings/wk)	8233	141	116	$\begin{gathered} 1.21 \\ (0.95-1.55) \\ \hline \end{gathered}$		59	45	$\begin{gathered} 1.32 \\ (0.90-1.95) \\ \hline \end{gathered}$	
African Americans	4939				0.23				0.92
<median (1.5 servings/wk)	2461	26	42	$\begin{gathered} 0.61 \\ (0.37-0.99) \\ \hline \end{gathered}$		5	21	$\begin{gathered} 0.23 \\ (0.09-0.62) \\ \hline \end{gathered}$	
\geq median (1.5 servings/wk)	2478	33	36	$\begin{gathered} 0.92 \\ (0.57-1.48) \end{gathered}$		3	14	$\begin{gathered} 0.21 \\ (0.06-0.74) \end{gathered}$	

	Total Invasive Cancer					Total Mortality			
		No. of Events				No.	of Events		
Total Fish Consumption (servings/week)	Total N	n-3	Placebo	HR (95\%Cl)	Interaction P-value	n-3	Placebo	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{Cl}) \end{gathered}$	Interaction P-value
Total Cohort	25435				0.094				0.017
<median (1.5 servings/wk)	13514	421	435	$\begin{gathered} 0.96 \\ (0.84-1.09) \end{gathered}$		237	271	$\begin{gathered} 0.87 \\ (0.73-1.04) \\ \hline \end{gathered}$	
\geq median (1.5 servings/wk)	11921	386	346	$\begin{gathered} 1.13 \\ (0.98-1.31) \end{gathered}$		240	202	$\begin{gathered} 1.19 \\ (0.99-1.44) \end{gathered}$	
Non-Hispanic Whites	17851				0.095				0.031
<median (1.5 servings/wk)	9618	331	347	$\begin{gathered} 0.94 \\ (0.80-1.09) \end{gathered}$		175	187	$\begin{gathered} 0.93 \\ (0.76-1.14) \\ \hline \end{gathered}$	
\geq median (1.5 servings/wk)	8233	299	266	$\begin{gathered} 1.13 \\ (0.96-1.34) \end{gathered}$		167	127	$\begin{gathered} 1.30 \\ (1.04-1.64) \end{gathered}$	
African Americans	4939				0.55				0.104
<median (1.5 servings/wk)	2461	55	58	$\begin{gathered} 0.94 \\ (0.65-1.36) \end{gathered}$		37	57	$\begin{gathered} 0.64 \\ (0.42-0.96) \end{gathered}$	
\geq median (1.5 servings/wk)	2478	53	48	$\begin{gathered} 1.10 \\ (0.75-1.63) \end{gathered}$		53	52	$\begin{gathered} 1.02 \\ (0.70-1.50) \end{gathered}$	

From Cox regression models controlling for age, sex, and vitamin D randomization group (intention-to-treat analyses). Analyses have not been adjusted for multiple comparisons.

Table S5. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) of Total Invasive Cancer Comparing Active Omega-3 Fatty Acids (n-3) and Placebo Groups, According to Baseline Characteristics

		Total Invasive Cancer			
Subgroup Category		No. of Events		HR (95\%CI)	Interaction P-value
	Total	n-3	Placebo		
Pre-specified					
Age	25871				0.50
<median (66.7 years)	12859	323	301	1.07 (0.92-1.25)	
\geq median (66.7 years)	13012	497	496	1.00 (0.89-1.14)	
Sex	25871				0.024
Male	12786	498	442	1.13 (1.00-1.29)	
Female	13085	322	355	0.90 (0.78-1.05)	
Race	25304				0.86
Non-Hispanic White	18046	637	621	1.02 (0.91-1.13)	
African American	5106	113	111	1.02 (0.79-1.33)	
Other	2152	54	51	1.13 (0.77-1.66)	
Current Smoker	25485				0.79
No	23649	740	705	1.05 (0.95-1.16)	
Yes	1836	73	75	1.01 (0.73-1.39)	
Total Fish Intake	25435				0.09
<median (1.5 servings/wk)	13514	421	435	0.96 (0.84-1.09)	
\geq median (1.5 servings/wk)	11921	386	346	1.13 (0.98-1.31)	
Vitamin D randomization	25871				0.56
Placebo group	12944	412	412	1.00 (0.87-1.15)	
Active group	12927	408	385	1.06 (0.92-1.22)	
Other Subgroup Analyses					
Baseline Aspirin Use	25497				0.50
No	13927	432	424	1.01 (0.88-1.16)	
Yes	11570	378	352	1.08 (0.94-1.25)	
Baseline Statin Use	25447				0.63
No	16557	494	483	1.03 (0.91-1.17)	
Yes	8890	318	293	1.08 (0.92-1.27)	

From Cox regression models controlling for age, sex, and vitamin D randomization group (intention-to-treat analyses). Analyses have not been adjusted for multiple comparisons.

Table S6. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) of Total Mortality Comparing Active Omega-3 Fatty Acids ($\mathrm{n}-3$) and Placebo Groups, According to Baseline Characteristics

 ${ }^{\mathrm{b}}$ Number of traditional cardiovascular disease risk factors (smoking, diabetes, hypertension, high cholesterol, parental history of premature myocardial infarction).
From Cox regression models controlling for age, sex, and vitamin D randomization group (intention-to-treat analyses). Analyses have not been adjusted for multiple comparisons.

Table S7. Hazard Ratios (HR) and 95\% Confidence Intervals (CI) for Safety and Adverse Events by Randomized Assignment to Omega-3 Fatty Acids (n-3) compared to Placebo

	No. of Events				
Outcome	$\mathbf{n - 3}$ $(\mathbf{N}=\mathbf{1 2 , 9 3 3})$	Placebo $(\mathbf{N}=\mathbf{1 2 , 9 3 8})$	$\mathbf{H R}$	$\mathbf{9 5 \%} \mathbf{\text { Cl }}$	P-value
Monitored safety conditions					
Gastrointestinal bleeding	370	374	0.99	$0.86-1.14$	0.89
Blood in urine	919	874	1.06	$0.96-1.16$	0.25
Easy bruising	3443	3399	1.02	$0.97-1.07$	0.48
Frequent nosebleeds	465	491	0.95	$0.83-1.07$	0.40
Kidney failure or dialysis	85	88	0.97	$0.72-1.30$	0.82
Other symptoms and side effects	4887	4843	1.01	$0.97-1.05$	0.72
Stomach upset or pain	3558	3550	1.00	$0.96-1.05$	0.94
Nausea	5184	5111	1.01	$0.97-1.05$	0.51
Constipation	5599	5580	1.00	$0.97-1.04$	0.77
Diarrhea	3331	3367	0.99	$0.94-1.03$	0.58
Skin rash	2240	2245	1.00	$0.95-1.06$	0.92
Bad taste in mouth	2217	2158	1.03	$0.97-1.10$	0.29
Increased burping					

From Cox regression models controlling for age, sex, and vitamin D randomization group (intention-to-treat analyses). Analyses have not been adjusted for multiple comparisons.

Figure S1. Flow Diagram of Enrollment in the Omega-3 Fatty Acid Component of the Trial

aNational Death Index

Figure S2. Cumulative Incidence Rates of A) Expanded Cardiovascular Events, B) Total Myocardial Infarction, C) Total Stroke, and D) Cardiovascular Mortality, By Year of Follow-up. From Cox regression models controlling for age, sex, and vitamin D randomization group (intention-to-treat analyses). The insets show the data on an enlarged y axis.

Figure S3. Hazard Ratios of Total Myocardial Infarction by Subgroups, Comparing Omega-3 Fatty Acids (n-3) and Placebo Groups. From Cox Regression Models Controlling for Age, Sex, and Vitamin D Randomization group (intention-to-treat analyses). Analyses were not adjusted for multiple comparisons.

