HIGH PREVALENCE OF NEUROCOGNITIVE IMPAIRMENT IN ADULTS WITH PERINATALLY ACQUIRED HIV INFECTION

Universitat d'Alacant Universidad de Alicante

TRACTOGRAPHY

None

Left

None

None

Right None

Not Performed

Not Performed

None

Both

Right

None

None

Both

Both

None

I J SHOW SHARES

Corticospinal Tract

None None

None Right

None None

None None

None None

None

left

Both

None

None None Both

nferior Longitudina

Damaged Left

Damaged None

Damaged Right

Damaged None None

Damaged Left | None

Damaged Left None

Normal Left None

Left

Normal

Normal

Corpus Callosum

NCI rascati Criteral

HAD

HAD

ANI

HAD

HAD

HAD

Normal

Normal

Normal

Normal

Normal

Normal

Atrophia

Normal

Normal

Motor function

0,51

0,5

-9,75

0.99

-0,83

-2,65

-0,01

5.96

-0,03

Portilla-Tamarit, I. 1-4; García-Rodríguez, G. 2-4; Bernabéu-Sanz, A. 7 Concepción, L. 8; Díez-Martínez, M. 2-4; Carreres, M. 2-4; Ferrer-Cascales, R 1; Portilla, J. 2-4 ¹University of Alicante, ²ISABIAL-FISABIO Foundation, ³Spanish AIDS Research Network, ⁴Department of Infectious Diseases, General University Hospital of Alicante, ⁷Inscanner S.L., ⁸Radiodiagnosis

Neurological Diseases

NO

HIV-encephalopathy

Burkitt's lymphoma

HIV-encephalopathy

NO

NO

HIV-myelopathy

NO

HIV-encephalopathy

Burkitt's lymphoma

NO

(SPAIN)

INTRODUCTION

Department, General University Hospital of Alicante.

Objectives. To analyze the prevalence of (NCI), neurocognitive impairment affected neurocognitive domains and damaged brain areas in HIV-adults with perinatally acquired HIV (PHIV).

METHODS

Design: observational, cross-sectional study.

Inclusion criteria: >18 years; perinatally acquired HIV: informed consent.

NCI was diagnosed using Frascati criteria. 7 neurocognitive domains were analyzed: attention and working memory, processing speed, long-term memory, learning, executive functions, verbal fluency and motor function.

Damaged brain areas were studied with Magnetic Resonance Imaging (MRI). We used clinical Magnet (Philips Achieva) employing a predefined protocol that included standard brain images (T2, FLAIR, SWI) as well as, diffusion tensor imaging (DTI) and isotropic weighted images for tractography and calculations processed volume with commercially available software.

ong term memory

0,45

-0,95

-1,22

-0,35

0,08

1,14

-1,7

0,24

-2,48

1,61

-1,77

-0,4

-1.14

0,27

1,99

2,05

-0,93

-0,6

1,55

-0,78

1,04

-1,04

0,55

-0,81

-0,5

-1,96

-0,19

-0,51

-2,9

0,07

-3,06

-0,78

-0,51

-1,11

-0,83

-1,94

-0,66

-0,88

-1,38

0,11

-1,5

-0,38

Working memory

Attention and

0,37

-1.06

0,27

-0,42

-0,43

-0,33

-1,43

-0,13

-1,96

-0,4

-0,1

HIV-VL cop-ml

<50

<50

<50

<50

<50

2830

142000

8980

135

<50

122

Processing speed

-0,33

-2,55

0,22

-2,22

-1

-0,8

-2,22

-0,33

-2,22

0,77

11/15(73%)patients of our PHIV-cohort were included. Mean age:23,9±3,5years;72,7%males;MeanCD4+:864,6±353,03 cells./µL

NEUROCOGNITIVE EVALUATION

Figure 1. Tractography results of cor callosum in S (A) and S7(B results show significant m damage in pa (B) being affe the frontal an parietal proje and commiss

	+		
		7	()
у			-

	(0)
y	,
rpus	
S10	
3). The	
a	
yelin	
atient	
ected	
nd	
ection	
sural	
	H

	Subject (S)
pus	1
S10	2
). The	3
a	4
yelin	5
atient	6
ected	7
nd	8
ection	9
sural	10

fibres.

Figure 2. Tractography results of the inferior longitudinal fasciculus obtained in S7. The results show a significant asymmetry with lower number of myelinated fibres detected in the left hemisphere.

Figure 3. Tractography results of the inferior frontoccipital fasciculus in S2(A) and S1 (B). The results suggest significant myelin damage in subject A, being affected the anterior (frontal) and posterior (occipital) fibres.

CONCLUSIONS

We found a high prevalence of NCI in adults with PHIV. The most impaired cognitive domains were: long-term memory, verbal fluency and processing speed. These patients showed abnormalities in the inferior longitudinal fasciculus and alterations in white matter microstructure probably related to past disease severity. Neuropsychological outcome of these population is unknown. irene.portilla@ua.es