HIV

- In spite of cART, HIV associated neurological disorders (HAND) remain prevalent (~50%)¹
- May reflect persistent inflammation and/or viral reservoirs within the brain¹
- Neuroimaging studies show HIV effects cortical and subcortical regions
 - ➢ Structure²
 - > Atrophy
 - ➤ White matter
 - ➤ Function³
 - ➢ Blood Flow
 - ➤ Connectivity
- 1. Heaton et. al, (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: Charter Study. Neurology.
- 2. Ances, Beau M., et al. "Independent effects of HIV, aging, and HAART on brain volumetric measures." *Journal of acquired immune deficiency* syndromes (1999).
- 3. Thomas, Jewell B., et al. "Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity." Neurology (2013).

A HIV- (n=52) B HIV+ (n=52) 0.3 0.1 -0.1 0.3 C (HIV-) - (HIV+) 2 1.5 -1.5

In the second se

Neuroimaging

- Functional MRI (FMRI) measures brain activity by detecting changes in bodies hemodynamic response
- Blood Oxygen Level Dependence
 - > Measures concentration of deoxyhemoglobin to assess brain activity
- Resting State fMRI
 - Enables the evaluation of the interaction of brain regions when not performing a task

Resting State Networks

Network Similarity

Within Network Similarity

Between Network Similarity

Aims

- Investigate a large cohort of PLWH and HIV- controls to
 - Use feature selection to identify functional brain networks most affected by HIV
 - Use feature selection to identify functional brain networks most affected by age in specific age bins
 - Model the temporal dynamics of network strength as a function of aging in both groups
 - Compare the trajectories of network strength to identify the effect of HIV on the aging brain in relation to functional organization

Data

> 3329 Scans

4 studies

> HIV

> ADRC

> DIAN

- $ightarrow \mathsf{GSP}^1$
- ➤ Age range 18-74

	HIV+	Controls	P
	N = 538	N = 2791	
Age (years)	47.2 ± 15.1	44.5 ± 22.9	.003
Sex (% Male)	69%	42%	< .0001
Education	13.4 ± 2.5	15.03 ± 2.4	< .0001
Race (% AA)	64%	31%	< .0001
Duration of HIV infection	12.8 ± 9.4	-	
Recent Viral Load, med (IQR)	32 (0)	-	
Current CD4 cells/µl, med (IQR)	647 (609)	-	
cART	95%	-	

1. Buckner; Roffman; Smoller, 2014, "Brain Genomics Superstruct Project (GSP)", Harvard Dataverse, V10

Methods: Feature Selection

- Feature Selection
 - Regions most affected by HIV
 - Relief Algorithm
 - Detect conditional dependencies between attributes and ranks importance using KNN approach
 - ≻ Full data set
 - ≻ Age bins

Feature Selection

Methods: Sliding Window Feature Selection

Sliding Window Feature Selection

Sliding Window Feature Selection

Sliding Window Feature Selection

Methods- Trajectories

- Trajectory Modeling
 - Trajectories most affected by HIV
 - Average correlation strength for each age
 - Polynomial Curve Fitting
 - Similarity of trajectoryCorrelations

Trajectories Most Affected

Trajectories Least Affected

Summary

- Strongest predictive regions of HIV status
 - ≻ Visual
 - ➢ Basal Ganglia
 - ➤ Salience
 - Cinguloopercular
 - ➢ Default Mode
- Subcortical/sensory regions affected first, followed by sensory/motor cortical regions
- Regional trajectories that showed the most dissimilarity
 - \succ Vision
 - ≻ Basal ganglia
 - ➤ Somatomotor
- Regional trajectories that showed the least dissimilarity
 - > Hubs involving the default mode

Acknowledgements

- Ances Lab:
 - Beau Ances
 - Kayla Hannon
 - Jeremy Strain
 - Karin Meeker
 - Sarah Cooley
 - Anna Boerwinkle
 - Dimitre Tomov
 - Haleem Azmy
 - Elizabeth Westerhaus
 - > Brittany Nelson
 - Regina Thompson
 - > John Doyle
 - > Alex Rosenow
 - Collin Kilgore
 - Michelle Glans

- Participants and families
- Infectious Disease clinic and AIDS
 Clinical Trial Group at Washington
 University in Saint Louis

