icon-folder.gif   Conference Reports for NATAP  
 
  The International Liver Congress™
EASL - European Association for the
Study of the Liver
Aug 27-29
Digital ILC 2020
Back grey_arrow_rt.gif
 
 
 
Machine Learning Models Accurately Interpret Liver Histology and Are Associated With Disease Progression in Patients With Primary Sclerosing Cholangitis
 
 
  EASL - The Digital International Liver Congress, 27-29 August 2020
 
Nathaniel Travis,1 Vincent Billaut,1 Harsha Pokkalla,1 Kishalve Pethia,1 Oscar Carrasco-Zevallos,1 Benjamin Glass,1 Amaro Taylor-Weiner,1 Christopher L. Bowlus,2 Atsushi Tanaka,3 Douglas Thorburn,4 Xiaomin Lu,5 Ryan Huss,5 Chuhan Chung,5 G. Mani Subramanian,5 Robert P. Myers,5 Andrew J. Muir,6 Kris V. Kowdley,7 Zachary Goodman,8 Aditya Khosla,1 Andrew Beck,1 Murray Resnick,1 Ilan Wapinski,1 Michael H. Trauner,9 Cynthia Levy10
 
1PathAI, Inc., Boston, Massachusetts, USA; 2University of California, Davis, USA; 3Teikyo University School of Medicine, Tokyo, Japan; 4UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, UK; 5Gilead Sciences, Inc., Foster City, California; 6Duke Clinical Research Institute, Durham, North Carolina, USA; 7Inova Fairfax Hospital, Falls Church, Virginia, USA; 8Liver Institute Northwest, Seattle, Washington, USA; 9Medical University of Vienna, Austria; 10University of Miami, Coral Gables, Florida, USA

0923201

0923202

0923203

0923204

0923205

0923206

0923207

References: 1. Eaton JE, et al. Gastroenterology 2013;145;3:521-36; 2. Lazaridis KN, LaRusso NF. N Engl J Med 2016;22;375:1161-70; 3. DeVries EM, et al. Hepatology 2017;65;3:907-19; 4. Pokkalla H, et al. AASLD 2019, abstr 187. Acknowledgments: We extend our thanks to the patients and their families. This study was funded by Gilead Sciences, Inc.