


## **Telomere Length, Traditional Risk Factors, HIV-related Factors and Coronary Artery Disease Events in Swiss Persons Living with HIV**

Isabella C. Schoepf<sup>1a</sup>, Tanja Engel<sup>1a</sup>, Marieke Raffenberg<sup>1a</sup>, Neeltje Kootstra<sup>2</sup>, Peter Reiss<sup>3</sup>, Christian Thorball<sup>4</sup>, Jacques Fellay<sup>4,5</sup>, Roger Kouyos<sup>6</sup>, Huldrych Günthard<sup>6</sup>, Bruno Ledergerber<sup>6</sup>, Philip E. Tarr<sup>1</sup>, and the Swiss HIV Cohort Study

<sup>1</sup>Medizinische Universitätsklinik, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland; <sup>2</sup>Departmental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Netherlands; <sup>3</sup>Department of Global Health and Division of Infectious Disease, Amsterdam, Netherlands; <sup>4</sup>EPFL School of Life Sciences and Swiss Institute of Bioinformatics; Lausanne, Switzerland; <sup>5</sup>Precision Medicine Unit, CHUV, University of Lausanne, Switzerland; <sup>6</sup>Division of Infectious Diseases, University Hospital Zurich, University of Zurich, Switzerland a=equal contribution

#### BACKGROUND

 In prospective studies and in large meta-analysis of the general population,<sup>1-</sup> <sup>3</sup> leukocyte telomere length (TL) shortening, as occurs with advancing age,<sup>4</sup> is associated with coronary artery disease (CAD) events.

• People living with HIV (PLWH) may have shorter TL<sup>5-6</sup> and accelerated atherosclerosis compared to the general population

• While the relationship between TL and CAD is likely complex,<sup>7</sup> genetic studies suggest a causal link.<sup>8--10</sup>

• It is unknown whether TL is associated with CAD in PLWH, independent of traditional and HIV-related risk factors.

### METHODS

• We measured TL in stored peripheral blood mononuclear cells (PBMC) by quantitative PCR, as previously described,<sup>6</sup> using the single copy albumin gene as control. Relative TL was estimated using a standard curve prepared from healthy blood donors.

 Study population: white Swiss HIV Cohort Study (SHCS; <u>www.shcs.ch</u>) participants.<sup>11</sup> Cases had a 1st CAD event during the study period (1.1.00-31.12.17).

|                                                         | Cases<br>(n=333) | Controls<br>(n=745) |
|---------------------------------------------------------|------------------|---------------------|
| Male sex, n (%)                                         | 287 (86.2)       | 641 (86.0)          |
| Age (years), median (IQR)                               | 54 (47.6)        | 53 (47.6)           |
| HIV acquisition mode, n (%)                             |                  |                     |
| Heterosexual                                            | 96 (28.8)        | 245 (32.9)          |
| • MSM                                                   | 158 (47.5)       | 369 (49.5)          |
| • IDU                                                   | 67 (20.1)        | 107 (14.4)          |
| Smoking, current n (%)                                  | 159 (47.8)       | 307 (41.2)          |
| Family History of CAD, n (%)                            | 57 (17.1)        | 84 (11.3)           |
| Diabetes mellitus, n (%)                                | 56 (16.8)        | 49 (6.6)            |
| Hypertension, n (%)                                     | 108 (32.4)       | 218 (29.3)          |
| Dyslipidemia, n (%)                                     | 225 (67.6)       | 350 (47.0)          |
| Framingham risk score (10-year risk), median (IQR) >10% | 188 (56.5)       | 346 (46.4)          |
| On ART, HIV RNA <50 copies/mL, n (%)                    | 269 (80.8)       | 588 (78.9)          |
| Currently on Abacavir, n (%)                            | 108 (32.4)       | 152 (20.4)          |
| Lopinavir/ritonavir, exposure >1 year, n (%)            | 97 (29.1)        | 128 (17.2)          |
| Indinavir, exposure >1 year, n (%)                      | 76 (22.8)        | 58 (7.8)            |
| Darunavir, exposure >1 year, n (%)                      | 49 (14.7)        | 70 (9.4)            |
| CD4 nadir (cells/µL), median (IQR)                      | 150 (57-238)     | 209 (130-315)       |
| Hepatitis C Seropositivity, n (%)                       | 86 (25.8)        | 148 (19.9)          |

#### **Table:** Characteristics of Cases and Controls At the

**Note**. Data are number (%) of participants, unless otherwise indicated. ART, antiretroviral therapy; CAD, coronary artery disease; IDU, intravenous drug use; IQR, interquartile range; MSM, men who have sex with men; CMV, cytomegalovirus

| Ç | Matching     | Date |
|---|--------------|------|
|   | in a company |      |

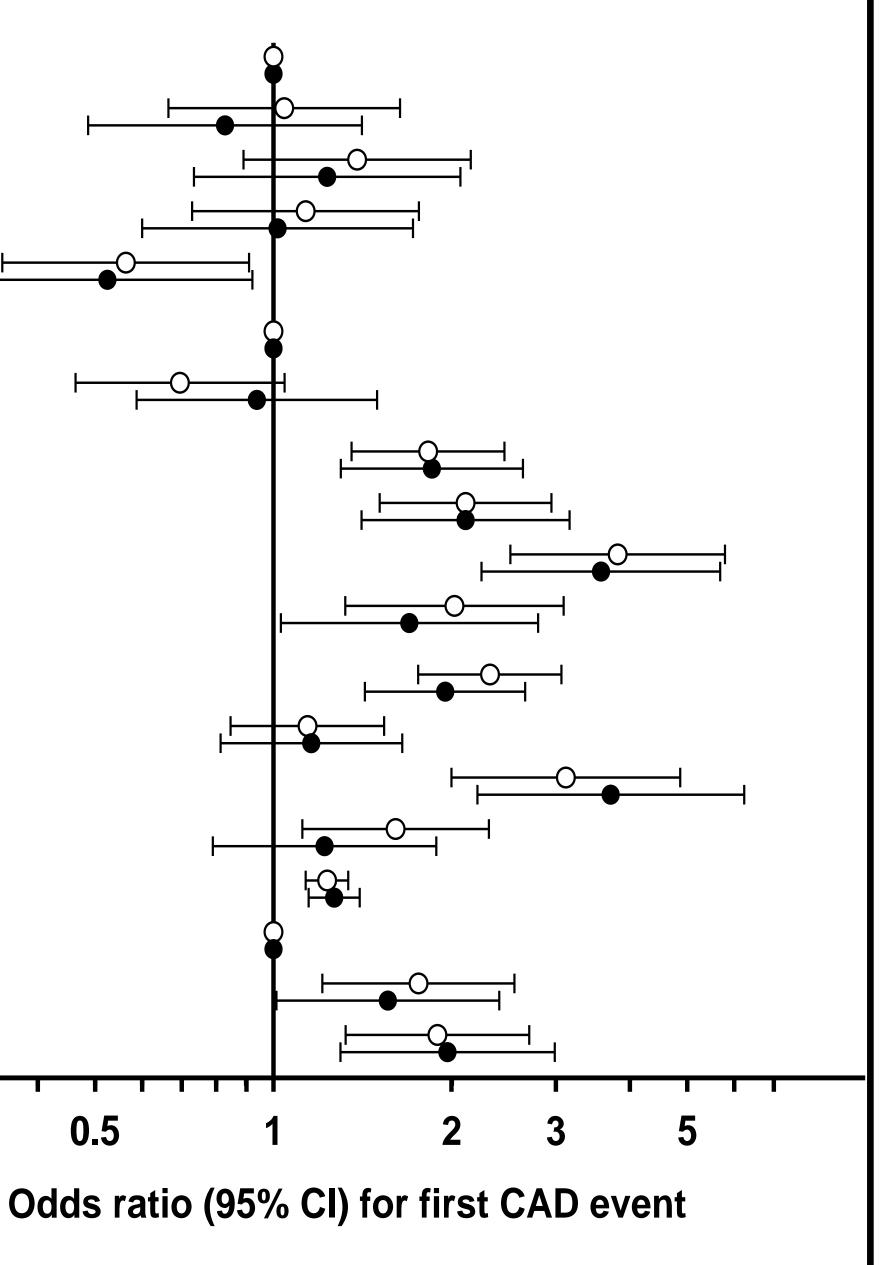
- We used incidence density sampling and matched 1-3 controls (CAD event-free) on gender, age, and date of SHCS registration.<sup>12-15</sup>
- Matching date of controls = CAD event date of corresponding cases
- We obtained univariable and multivariable odds ratios (OR) for a first CAD event from conditional logistic regression analyses
- Variables: TL, age, gender, smoking, family history, hypertension, diabetes, hypercholesterolemia, and HIV-related factors (recent exposure to abacavir,<sup>14</sup> exposure >1 year to indinavir, lopinavir/ritonavir, darunavir;<sup>15</sup> on ART but HIV RNA>50 copies/mL), and CMV seropositivity.<sup>16</sup>

#### RESULTS

- We included 333 cases and 745 controls (**Table**).
- event.

# Traditional and HIV-related Risk Factors

| 1 <sup>st</sup> (shortest)                                                                           |             |     |
|------------------------------------------------------------------------------------------------------|-------------|-----|
| Quintiles of relative3rdtelomere length4th5th (longest)                                              |             | ⊢ ⊢ |
| HIV viremia <50 copies/mL<br>HIV viremia ≥50 copies/mL                                               |             |     |
| Current Abacavir<br>≥1 year use of Lopinavir<br>≥1 year use of Indinavir<br>≥1 year use of Darunavir |             |     |
| Dyslipidemia<br>Hypertension<br>Diabetes                                                             |             |     |
| Family history of CAD                                                                                |             |     |
| Age per 1 year older<br>Never                                                                        |             |     |
| Smoking Past                                                                                         |             |     |
| Current                                                                                              |             |     |
|                                                                                                      | 0.2         | 0.3 |
| • Univariable models                                                                                 | <b>U.</b> Z | U.J |
| • Multivariable models                                                                               |             | (   |


**Note**. Uni- and multivariable conditional logistic regression of associations with CAD. Results involve 333 cases and 745 controls. Multivariable models are adjusted for all variables displayed, i.e. for traditional and HIV-related risk factors



Median (IQR) time of TL measurement: 9.4 (5.9-13.8) years prior to CAD

Participants in the 5th (longest) TL quintile, compared to the 1st (shortest) TL quintile had univariable CAD odds ratio=0.56 (95% confidence interval, 0.35-0.91; p=0.02), and multivariable OR=0.52 (0.30-0.92; p=0.03; Figure).

**Figure**: CAD Odds Ratio According to Quintiles of Telomere Length,



- quintile.

### CONCLUSIONS

- telomeres.

References <sup>1</sup> Haycock PC et al. BMJ 2014; 349:1–11. <sup>2</sup> Brouilette SW et al. Lancet 2007; 369:107–114. <sup>3</sup> Weischer M et al. Arterioscler Thromb Vasc Biol 2012; 32: 822–9. <sup>4</sup> Fyhrquist F et al. Nat Rev Cardiol 2013; 10:274–283 <sup>5</sup> Zanet DL et al. CID 2014; 58:1322–32. <sup>6</sup>Jiménez VC et al. J Infect Dis 2016; 214:216–225. <sup>7</sup> de Meyer T et al. J Am Coll Cardiol 2018; 72: 805–13. <sup>8</sup> Codd V et al. Nat Genet 2013; 45: 422–7. <sup>9</sup> Scheller Madrid A et al. Clin Chem 2016; 62: 1140–9. <sup>10</sup> Said MA et al. J Am Coll Cardiol 2017; 70: 506–7. <sup>11</sup> Schoeni-Affolter F et al. Swiss HIV Cohort Study. Int J Epidemiol 2010; 39: 1179–89. <sup>12</sup> Essebag V et al. Am Heart J 2003; 146: 581–90. <sup>13</sup> Greenland S et al. Am J Epidemiol 1982; 116: 547–53. <sup>14</sup> D:A:D study group. Lancet 2008; 371: 1417–26. <sup>15</sup> Ryom L et al. Lancet HIV 2018; 5: e291–e300.



**Correspondence:** isabella.schoepf@unibas.ch philip.tarr@unibas.ch

CMV seropositivity was associated with univariable CAD OR=1.65 (1.11-2.44), and multivariable OR 1.65 (1.06-2.57)

• <u>Sensitivity analysis including CMV seropositivity in the multivariable</u> model: participants in 5<sup>th</sup> TL quintile had CAD OR=0.52 (0.30-0.93) compared to 1<sup>st</sup> quintile.

Sensitivity analysis including CMV and HCV seropositivity and injection drug use (IDU) in the multivariable model: participants in 5<sup>th</sup> TL quintile had CAD OR=0.53 (0.29-0.98) compared to 1<sup>st</sup>

Sensitivity analysis with adjustment only for Framingham risk score: participants in 5<sup>th</sup> TL quintile had CAD OR=0.55 (0.34-0.90) compared to 1<sup>st</sup> quintile.

• PLWH with the longest telomeres had approximately half the odds of developing CAD of those with the shortest

• Results were robust after adjustment for multiple traditional and HIV-associated CV risk factors, when adjusted only for Framingham risk score, and when adjusted for CMV serostatus, HCV serostatus, and IDU. • TL was associated with acute CAD events when measured >9 years prior to CAD event date, suggesting TL is more than a coincidental surrogate marker, i.e. TL may have important clinical implications in PLWH

<sup>16</sup> Spyridopoulos I et al. Circulation 2009; 120: 1364–72.