

Cardiovascular Risk Management among Persons Living with HIV: Does Provider Specialty Matter?

Nwora Lance Okeke¹, Katherine R. Schafer², Eric G. Meissner³, Ansal D. Shah⁴, Jan Ostermann⁵, Brian Ostasiewski², Evan Phelps⁶, Curtis A. Kieler⁷, Eniola Oladele⁷, Keva Garg¹, Susanna Naggie¹, Gerald S. Bloomfield⁸ and Hayden B. Bosworth⁹

1- Division of Infectious Diseases- Duke University Medical Center; 2- Division of Infectious Diseases- Medical University of South Carolina; 4- Division of Infectious Diseases- Medical University of South Carolina; 4- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University of South Carolina; 4- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University of South Carolina; 4- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medical University School of Medicine; 3- Division of Infectious Diseases- Medicine; 3- Division of Infectious Diseases- Medical University School Diseases – University of South Carolina; 5- Arnold School of Public Health, University of South Carolina; 7- Office of Information Technology, Duke University School of Medicine; 8- Division of Cardiology, Duke University Medical Center; 9- Department of Population Health Sciences, Duke University School of Medicine

Introduction

- Persons living with HIV (PLWH) are at 1.5-2x increased risk of major cardiovascular disease (CVD) events than uninfected persons.
- CVD risk factor management in PLWH is often rendered by specialty providers because of the varied models of chronic disease care delivery in this population.
- The implications of provider specialty on meeting evidencebased CVD risk factor goals among PLWH is unclear.

Methods

- Retrospective analysis of all PLWH with hypertension and/or hyperlipidemia receiving outpatient care at three universitybased infectious disease (ID) clinics: Duke, Wake Forest Baptist, Medical University of South Carolina (MUSC) between 2013 and 2017.
- Clinical data was obtained from the Carolinas Collaborative Research Network Database, a compendium of clinical data from the EMR of 9 healthcare systems in North and South Carolina, and part of the Stakeholders, Technology and Research (STAR) Clinical Research Network.
- Data was abstracted on persons with hypertension and/or hyperlipidemia prior to the start of the study period and without history of ASCVD (acute coronary syndrome, stroke, coronary artery intervention or peripheral vascular disease)
- Hypertension and hyperlipidemia were determined by the presence of either diagnosis on a patient's EMR problem list.
- In the database, clinic of origination of medication prescription order was used as a surrogate for provider specialty, given absence of identifying data for individual providers.
- Responsible clinic for hypertension/hyperlipidemia management (and associated specialty) were defined by prescriptions ordered (antihypertensive or statin) and classified as follows: ID clinic only (\geq 3 prescriptions without evidence of prescription entry from alternate clinic), non-ID primary care clinic only, comanaged by ID and primary care, medication prescribed by other (non-ID or PCP) clinic, no evidence of prescription.
- Patients followed until ASCVD event, death or end of study observation period.
- Primary outcome for hypertension was meeting JNC 8 goals at end of observation period; for hyperlipidemia: change in end observation LDL from baseline.
- Logistic regression model adjusted for age, gender, race/ethnicity and insurance status.

Hypothesis

PLWH who receive their ASCVD primary preventative care from the ID clinic would be less likely to meet evidencebased hypertension goals and experience less reduction in LDL-c cholesterol than other PLWH.

Characteristic	Number of Patients (%) (n =		
	1850)		
Male	1217 (66)		
Black	1193 (65)		
Hispanic	58 (3)		
Mean Age at Start of Observation	52.7 (7.7)		
(SD)			
Diagnosis			
Hypertension only	825 (45)		
Hyperlipidemia only	237 (13)		
Hypertension and Hyperlipidemia	788 (43)		
Diabetes	209 (11)		
All Three Diagnoses	125 (7)		
CVD Events	101		
Acute Coronary Syndrome	27		
Coronary Intervention w/o	10		
ACS			
Stroke	43		
Peripheral Vascular Disease	25		
Deaths	168 (9)		

Figure 1. Cardiovascular Medication Prescriptions by Clinic of Origination

Results

Table 1. Study Population

Statins for PLWH with Hyperlipidemia (n = 1025)

Table 2. Blood Pressure Measurements by Prescribing Clinic among PLWH with HTN*

Characteristic	All Patients	ID Only	PCP Only	Both	On meds	No evidence	Variable	Unadjusted RR (95%	Adjusted RR
	(n = 1296)	(n = 269)	(n = 224)	(n = 49)	entered by	ntered by of BP meds Other (n = 467) (n = 287)	BP meds	CI)	(95% CI)
					(n = 287)		Female	0.98 (0.85-1.15)	1.02 (0.92-1.13)
Start of							Black	0.90 (0.77-1.04)	0.89 (0.81-0.99)
Observation							Hispanic	0.98 (0.62-1.55)	0.96 (0.71-1.29)
Mean SBP (SD)	135.6 (19.5)	142.1 (21.1)	134.2	142.8	134.2 (19.8)	132.6 (17.5)	Age (per 10 year	1.01 (0.92-1.11)	1.00 (0.99-1.01)
			(18.7)	(22.5)			increase)		, , , ,
Mean DBP (SD)	79.8 (12.0)	82.9 (13.7)	79.1 (10.9)	84.7 (13.6)	79.3 (11.6)	78.1 (11.3)			/
End of							Medicaid/Medicare	1.01 (0.87-1.17)	0.88 (0.55-1.40)
Observation							Self Pay	0.95 (0.76-1.18)	0.85 (0.53-1.35)
Mean SBP (SD)	134.5 (19.1)	139.2 (18.7)	132.5 (19.9)	139.8 (21.1)	133.9 (19.9)	132.4 (17.5)	Antihypertensive	0.79 (0.66-0.94)	0.80 (0.70-0.91)
Mean DBP (SD)	80.5 (12.3)	82.8 (12.8)	79.7 (1.4)	85.0 (12.2)	79.2 (12.6)	79.9 (12.0)	Prescribed by ID		
Change in SBP	-1.1	-2.9	-1.7	-3.0	-0.3	-0.2	Clinic		
over Observation									
Period							Table 4. Relative Risl	k for meeting NLA non HDL-c	Goals (n = 889)
Change in DBP	0.7	-0.1	0.6	0.3	-0.1	1.8	Variable	Unadjusted RR (95%	Adjusted RR
over Observation								CI)	(95%CI)
Period							E anna la		

*Duke and WF Data Onlv

Figure 2. Percentage of Patients with BP <140/90mm Hg

Figure 3. Change in non-HDL-c by Prescription Provider

This research was supported by the National Heart, Lung and Blood Institute (K23 HL137611) and the Duke University Center for AIDS Research (CFAR) an NIH funded program (5P30 AI064518)

Contact Info: lance.okeke@duke.edu

ID Only Primary Care
 Other MD
No Meds

Table 3 Relative Risk for meeting INC-8 Blood Pressure Goals (n - 1296)

ariable	Unadjusted RR (95%	Adjusted RR				
	CI)	(95%CI)				
emale	0.92 (0.72-1.16)	0.97 (0.75-1.24)				
lack	0.97 (0.78-1.21)	1.02 (0.81-1.30)				
ispanic	1.16 (0.71-1.88)	1.56 (0.99-2.46)				
ge (per 10 year icrease)	1.23 (1.08-1.40)	1.18 (1.04-1.35)				
ledicaid/Medicare	1.13 (0.91-1.40)	1.01 (0.22-1.53)				
elf Pay	0.98 (0.73-1.32)	1.02 (0.68-1.51)				
tatin Prescribed	0.72 (0.53-0.97)	0.75 (0.59-0.94)				

RR, relative risk; NLA, National Lipid Association

Limitations

- Retrospective study without full ascertainment of other non ID/primary care physicians prescribing medications.
- Antiretroviral data were not available to study impact on lipid profiles.
- Data on individual providers were not available in the dataset.

Conclusions

- Persons living with HIV who had anti-hypertensive and lipid-lowering medications prescribed primarily by ID specialty clinics were less likely to meet evidence-based goals for hypertension and hyperlipidemia
- Future studies will look into the role of care fragmentation, lack of CVDoriented decision support for HIV clinicians and clinical inertia as contributors to these observed disparities in outcomes.
- Clinic-based interventions designed to support ID clinicians committed to providing non-AIDS chronic disease care to their patients are needed.

References

JAMA Intern Med. 2013 Apr 22;173(8):614-22 Clin Infect Dis. 2016 Oct 1;63(7):966-975 J AIDS Clin Res. 2014 Nov;5(11)