# Supplementary Appendix

Supplement to: Kelley CF, Acevedo-Quiñones M, Agwu AL, et al. Twice-yearly lenacapavir for HIV prevention in men and gender-diverse persons. N Engl J Med. DOI: 10.1056/NEJMoa2411858

This appendix has been provided by the authors to give readers additional information about the work.

# Supplementary Appendix

# Table of Contents

| PURPOSE 2 Study Team                                                             | 3  |
|----------------------------------------------------------------------------------|----|
| PURPOSE 2 Study Sites, Investigators, and Key Staff                              | 6  |
| Global Community Advisory Group                                                  | 11 |
| Supplementary Methods                                                            | 12 |
| Rationale for the Study Design                                                   | 12 |
| HIV Diagnostic Testing and Case Adjudication                                     | 12 |
| Figure S1. HIV-Testing Algorithm                                                 | 14 |
| Adherence Counseling and Support                                                 | 14 |
| Site-Specific Recruitment Plans                                                  | 15 |
| Social Harms Reporting and Support for Participants                              | 15 |
| Excerpts from the PURPOSE 2 Full Statistical Analysis Plan                       | 16 |
| Analysis of the Primary Efficacy Endpoint                                        | 16 |
| Figure S2. A High-Level Screening Schema and Contribution of Participants to the |    |
| Estimation of the bHIV                                                           | 17 |
| Table S1. Recency Outcome from the RITA                                          | 19 |
| Table S2. MDRI and FRR                                                           | 20 |
| Table S3. Summary for Key (Alpha-Controlled) Efficacy Evaluations                | 23 |
| Multiple Comparisons                                                             | 24 |
| Table S4. Testing Sequence of Null Hypotheses.                                   | 24 |
| Alpha Spending for Multiple Analyses (Interim and Primary Analyses)              | 24 |
| Supplementary Results                                                            | 29 |
| Figures                                                                          | 30 |
| Figure S3. Time from First Dose to HIV-1 Diagnosis                               | 30 |
| Figure S4. Injection-Site Reactions (Nodules, Pain, and Erythema)                | 31 |
| Tables                                                                           | 32 |
| Table S5. HIV Test Results for Participants Adjudicated to Have HIV at Baseline  | 32 |
| Table S6. Screening and Baseline Demographics and Clinical Characteristics       | 34 |
| Table S7. Time at Risk of HIV in the Study and Retention Based on Attending      |    |
| Study Visit and Receiving HIV Testing                                            | 38 |
| Table S8. Adherence                                                              | 40 |
| Table S9. Clinical Hold                                                          | 41 |
| Table S10. The Incidence of Laboratory-Diagnosed N. gonorrhoeae, C.              |    |
| trachomatis                                                                      | 43 |
| Table S11. The Incidence of Syphilis                                             | 44 |
| Table S12. HIV Test Results in Participants Receiving Lenacapavir Who Were       |    |
| Diagnosed with HIV-1                                                             | 45 |
| Table S13. Grade 3 or Higher Adverse Events                                      | 46 |

| Table S14. Adverse Events Leading to Premature Study Drug Discontinuation    | 58 |
|------------------------------------------------------------------------------|----|
| Table S15. Grade 3 and 4 Laboratory Abnormalities                            | 60 |
| Table S16. PURPOSE 2 in Comparison with Previous PrEP Trials                 | 64 |
| Table S17. Participants in PURPOSE 2 Reflect Global Populations of Cisgender |    |
| Gay, Bisexual, and Other Men; Transgender Women; Transgender Men; and        |    |
| Gender Nonbinary Individuals Disproportionately Affected by HIV Acquisition  |    |
| and Historically Underrepresented in PrEP Clinical Trials                    | 65 |
| References                                                                   | 67 |

# PURPOSE 2 Study Team

| Principal investigator   | Country       | Site name                                                                                          |  |  |
|--------------------------|---------------|----------------------------------------------------------------------------------------------------|--|--|
| Maribel Acevedo-Quiñones | Puerto Rico   | Centro Ararat — San Juan                                                                           |  |  |
| Allison L. Agwu          | United States | Johns Hopkins University School of Medicine                                                        |  |  |
| Suvaporn Anugulruengkitt | Thailand      | Chulalongkorn University                                                                           |  |  |
| Anchalee Avihingsanon    | Thailand      | HIV-NAT, Thai Red Cross AIDS Research<br>Centre and Center of Excellence in Tuberculosis           |  |  |
| Joanne Batting           | South Africa  | Foundation for Professional Development                                                            |  |  |
| Jose A. Bazan            | United States | The Ohio State University College of Medicine                                                      |  |  |
| Paul Benson              | United States | Be Well Medical Center                                                                             |  |  |
| Vladimir Berthaud        | United States | Meharry Medical College                                                                            |  |  |
| Jill Blumenthal          | United States | University of California San Diego — Antiviral<br>Research Center                                  |  |  |
| Indira Brar              | United States | Henry Ford Hospital                                                                                |  |  |
| Cynthia Brinson          | United States | Central Texas Clinical Research                                                                    |  |  |
| Carlos Brites            | Brazil        | Complexo Hospitalar Universitário Professor<br>Edgard Santos                                       |  |  |
| Pedro Cahn               | Argentina     | Fundación Huésped                                                                                  |  |  |
| Thomas B. Campbell, IV   | United States | Colorado Clinical and Translational Sciences<br>Institute (CCTSI)                                  |  |  |
| Valeria D. Cantos        | United States | Emory University — Ponce de Leon Center<br>Clinical Research Site HIV/AIDS Clinical Trials<br>Unit |  |  |
| Michelle Cespedes        | United States | Mount Sinai Downtown CRS                                                                           |  |  |
| Ploenchan Chetchotisakd  | Thailand      | Srinagarind Hospital                                                                               |  |  |
| Jesse Clark              | United States | University of California Los Angeles (UCLA)                                                        |  |  |
| Meredith Clement         | United States | Louisiana State University Health Sciences<br>Center                                               |  |  |
| Katya Corado             | United States | Lundquist Institute for Biomedical Innovation<br>(LA BioMed)                                       |  |  |
| Gonzalo Corral           | Argentina     | Instituto de Investigaciones Clínicas Mar del<br>Plata                                             |  |  |
| Catherine Creticos       | United States | Howard Brown Health Sheridan                                                                       |  |  |
| Gordon E. Crofoot        | United States | Crofoot MD Clinic and Research Center                                                              |  |  |
| Edwin DeJesus            | United States | Orlando Immunology Center                                                                          |  |  |
| Ricardo S. Diaz          | Brazil        | Universidade Federal de São Paulo                                                                  |  |  |
| Craig Dietz              | United States | KC Care Health Center — Midtown                                                                    |  |  |
| Susanne Doblecki-Lewis   | United States | Jackson Memorial Hospital, University of<br>Miami Miller School of Medicine                        |  |  |
| David F. Dougherty       | United States | Baptist Health Lexington                                                                           |  |  |
| Ian Frank                | United States | Penn Medicine — Perelman Center for<br>Advanced Medicine                                           |  |  |

| James W. Galbraith                  | United States | Open Arms Healthcare Center                                                    |  |  |
|-------------------------------------|---------------|--------------------------------------------------------------------------------|--|--|
|                                     | Peru          | Centro de Investigaciones Tecnológicas,                                        |  |  |
| Jorge A. Gallardo-Cartagena         |               | Biomédicas y Medioambientales, Universidad                                     |  |  |
|                                     |               | Nacional Mayor de San Marcos                                                   |  |  |
| Aditya Gaur                         | United States | St. Jude Children's Research Hospital                                          |  |  |
| Beatriz Grinsztejn                  | Brazil        | Fundação Uswaldo Cruz — Instituto Nacional                                     |  |  |
|                                     |               | Fundação de Medicina Tropical Doutor Heitor                                    |  |  |
| Marcus Guimaraes De Lacerda         | Brazil        | Vieira Dourado                                                                 |  |  |
| Michael Guyton Nunley               | United States | Prisma Health Adolescent and Young Adult                                       |  |  |
| Whender Ouyton-Ivaniey              | Onned States  | Medicine                                                                       |  |  |
| Shawn K. Hassler                    | United States | Optimus Medical Group/StudyOps                                                 |  |  |
| Christine L. Heumann                | United States | Bell Flower Clinic                                                             |  |  |
| Juan Carlos Hinojosa Boyer          | Peru          | Asociación Civil Selva Amazónica                                               |  |  |
| Theo Hodge                          | United States | Washington Health Institute                                                    |  |  |
| Moises A. Huaman                    | United States | University of Cincinnati Health Holmes Hospital                                |  |  |
| Richard Kaplan                      | South Africa  | Desmond Tutu Health Foundation                                                 |  |  |
| Colleen F. Kelley                   | United States | The Hope Clinic of Emory University                                            |  |  |
| Sasisopin Kiertiburanakul           | Thailand      | Faculty of Medicine Ramathibodi Hospital                                       |  |  |
| Javier Ricardo Lama Valdivia        | Peru          | Asociación Civil Impacta Salud y Educación -<br>Barranco CRS                   |  |  |
| Anthony LaMarca                     | United States | Therafirst Medical Center                                                      |  |  |
| Marcelo H. Losso                    | Argentina     | Hospital General de Agudos José María Ramos<br>Mejía                           |  |  |
| Christopher Lucasti                 | United States | South Jersey Infectious Disease                                                |  |  |
| Morakane Alicia Caroline<br>Makwela | South Africa  | Setshaba Research Centre                                                       |  |  |
| Weerawat Manosuthi                  | Thailand      | Bamrasnaradura Infectious Diseases Institute                                   |  |  |
| Kenneth H. Mayer                    | United States | Fenway Health Medical Clinic                                                   |  |  |
| Eric G. Meissner                    | United States | Medical University of South Carolina                                           |  |  |
| Ivan Melendez-Rivera                | Puerto Rico   | Centro Ararat-Ponce                                                            |  |  |
| Anthony Mills                       | United States | Mills Clinical Research                                                        |  |  |
| Kathryn Mngadi                      | South Africa  | Aurum Institute — Clinical Research Tembisa                                    |  |  |
| Caryn G. Morse                      | United States | Wake Forest University Baptist Medical Center                                  |  |  |
| Karam Mounzer                       | United States | Philadelphia FIGHT Community Health Centers<br>— Jonathan Lax Treatment Center |  |  |
| Nkosiphile Ndlovu                   | South Africa  | Wits Reproductive Health and HIV Institute<br>(Wits RHI)                       |  |  |
| Richard M. Novak                    | United States | University of Illinois Medical Center                                          |  |  |
| Onyema Ogbuagu                      | United States | Yale New Haven Hospital                                                        |  |  |
| Alma Minerva Perez Rios             | Mexico        | Centro De Investigacion Farmaceutica<br>Especializada de Occidente             |  |  |
| Nittaya Phanuphak                   | Thailand      | Institute of HIV Research and Innovation —<br>Pribta Tangerine Clinic          |  |  |

|                             |               | Hospital Geral de Nova Iguaçu / AIDS and                                       |  |  |
|-----------------------------|---------------|--------------------------------------------------------------------------------|--|--|
| Jose Henrique Pilotto       | Brazil        | Molecular Immunology Laboratory / IOC /                                        |  |  |
|                             |               | Fiocruz                                                                        |  |  |
| Jorge Pinto                 | Brazil        | Universidade Federal de Minas Gerais                                           |  |  |
| Jose Valdez Ramalho Madruga | Brazil        | Centro de Referência e Treinamento DST/AIDS-<br>SP                             |  |  |
| Moti Ramgopal               | United States | Midway Immunology and Research Center                                          |  |  |
| Jeffrey S. Reeves           | United States | Norton Infectious Diseases Institute                                           |  |  |
| Lina Rosengren-Hovee        | United States | UNC Global HIV Prevention and Treatment<br>Clinical Trials Unit                |  |  |
| Peter J. Ruane              | United States | Ruane Clinical Research Group                                                  |  |  |
| Kamla Sanasi-Bhola          | United States | Prisma Health Richland Hospital                                                |  |  |
| Breno Santos                | Brazil        | Hospital Nossa Senhora da Conceição                                            |  |  |
| Patric Schine               | United States | Bios Clinical Research                                                         |  |  |
| Tanya Schreibman            | United States | CAN Community Health — Sarasota                                                |  |  |
| Hyman Scott                 | United States | San Francisco Department of Public Health                                      |  |  |
| Namrata Shah                | United States | Whitman-Walker Health                                                          |  |  |
| Peter Shalit                | United States | Peter Shalit MD and Associates                                                 |  |  |
| Jihad Slim                  | United States | Saint Michael's Medical Center                                                 |  |  |
| LaShonda Y. Spencer         | United States | Charles R. Drew University                                                     |  |  |
| Khuanchai Supparatpinyo     | Thailand      | Chiang Mai University — Research Institute for<br>Health Sciences (RIHES)      |  |  |
| Javier Valencia             | Peru          | Asociacion Civil Impacta Salud y Educacion —<br>San Miguel CRS                 |  |  |
| Cornelius N. Van Dam        | United States | Cone Health Regional Center for Infectious<br>Disease                          |  |  |
| Olivia T. Van Gerwen        | United States | University of Alabama at Birmingham                                            |  |  |
| Ricardo Vasconcelos         | Brazil        | Hospital das Clínicas da Faculdade de Medicina<br>da Universidade de São Paulo |  |  |
| Jose Gabriel Vasquez Cerro  | Peru          | Via Libre                                                                      |  |  |
| Jennifer Veltman            | United States | Loma Linda University Medical Center                                           |  |  |
| Robert Woolard              | United States | Centro San Vicente — Pebble Hills Clinic                                       |  |  |
| Kimberly Workowski          | United States | Emory University Hospital Midtown                                              |  |  |
| Ashraf Zadshir              | United States | Bios Clinical Research                                                         |  |  |
| Zwelethu Zwane              | South Africa  | Aurum Institute — Clinical Research Pretoria                                   |  |  |

| Institution                                        | Team Members                                         |  |
|----------------------------------------------------|------------------------------------------------------|--|
| Asociación Civil Impacta Salud y Educación —       | Javier R. Lama                                       |  |
| Barranco CRS                                       | Mey Leon                                             |  |
|                                                    | Dalila Salazar                                       |  |
| Asociacion Civil Impacta Salud v Educacion — San   | Javier Valencia                                      |  |
| Miguel CRS                                         | Jose Antonio Narrea Cango                            |  |
|                                                    | Lissette Rodríguez Pablo                             |  |
| Asociación Civil Selva Amazónica                   | Juan Carlos Hinoiosa Bover                           |  |
|                                                    | Wilfredo Martin Casapia Morales                      |  |
|                                                    | Higinio Alberto Quino Ascurra                        |  |
| Aurum Institute — Clinical Research Pretoria       | Zwelethu Zwane                                       |  |
|                                                    | Oteng Letlape                                        |  |
|                                                    | Innocent Shibambo                                    |  |
| Aurum Institute — Clinical Research Tembisa        | Kathyrn Mngadi                                       |  |
|                                                    | Sabiha Shaik                                         |  |
|                                                    | Mashudu Mahlangu                                     |  |
| Bantist Health Levington                           | David F. Dougherty                                   |  |
| Daptist Health Lexington                           | Charles F. Rose                                      |  |
|                                                    | Sanghamitra Satanathy                                |  |
| Be Well Medical Center                             | Paul Benson                                          |  |
|                                                    | Mark Rosen                                           |  |
|                                                    | Amber Hooper                                         |  |
| Pell Flower Clinic                                 | Christing I. Haumann                                 |  |
| Ben Flower Chine                                   | Somir V. Gunto                                       |  |
|                                                    | Lora I. Fortenberry                                  |  |
| Pios Clinical Desearch                             | Datrie Schine                                        |  |
| bios Chinical Research                             | Golkoo Morcos                                        |  |
|                                                    | Leah Lane                                            |  |
| CAN Community Health — Sarasota                    | Tanya Schreibman                                     |  |
| Sarasota                                           | Lavinia Suciu                                        |  |
|                                                    | Prerak Shukla                                        |  |
| Central Texas Clinical Research                    | Cynthia Brinson                                      |  |
| Centro Ararat — Ponce                              | Iván Meléndez Rivera                                 |  |
| Centro Ararat — Fonce                              | Julio Bacó                                           |  |
|                                                    | Sulvia Rodriguez                                     |  |
| Contro Arorat Son Juan                             | Marihal Acayada Quiñanas                             |  |
| Centro Ararat — San Juan                           | Alajandra Valaz                                      |  |
|                                                    | Romano Baroni                                        |  |
| Centre de Investignaiones Tecnológicas, Piemódicas | Jorge A. Gallardo Cartagena                          |  |
| v Madioambiantalas                                 | Luis M Toro-Polo                                     |  |
| y Medioaniolentales                                | Dara Garman Quiñanas                                 |  |
| Cantro de Investigación Formacoution Formacioli-   | Alma Minarya Daraz Diag                              |  |
| de Occidente                                       | Anna Minici va relez Klos                            |  |
|                                                    | Samu Armando Figueroa Lomen<br>Misoel Torres Alecrez |  |
| Contra de Defenêncie e Taria en este DOT/ADO OD    | IVIISACI I OITES AICATAZ                             |  |
| Centro de Referencia e Treinamento DS1/AIDS-SP     | Jose Valdez Kamalho Madruga                          |  |
|                                                    | Lucas Kocker Kamos                                   |  |
|                                                    | Ricardo Augusto Braga de Castro                      |  |
| Centro San Vicente — Pebble Hills Clinic           | Kobert Woolard                                       |  |

# PURPOSE 2 Study Sites, Investigators, and Key Staff

| Institution                                            | Team Members                |  |
|--------------------------------------------------------|-----------------------------|--|
|                                                        | Gerardo Anaya               |  |
|                                                        | Rudy Castaneda              |  |
| Charles R. Drew University                             | LaShonda Y. Spencer         |  |
|                                                        | Jessica Schneider           |  |
|                                                        | Lauren Harris               |  |
| Chiang Mai University — Research Institute for         | Khuanchai Supparatpinyo     |  |
| Health Sciences (RIHES)                                | Taweewat Supindham          |  |
|                                                        | Pongpun Saokhieo            |  |
| Chulalongkorn University                               | Suvaporn Anugulruengkitt    |  |
|                                                        | Thanyawee Puthanakit        |  |
|                                                        | Tuangtip Theerawit          |  |
| Colorado Clinical and Translational Sciences Institute | Thomas B. Campbell          |  |
| (CCTSI)                                                | Vanessa Sutton              |  |
|                                                        | Nicola Haakonsen            |  |
| Complexo Hospitalar Universitário Professor Edgard     | Carlos Brites               |  |
| Santos                                                 | Ana Clara Maganino Ambrosio |  |
|                                                        | Dayana Alves                |  |
| Cone Health Regional Center for Infectious Disease     | Cornelius N. Van Dam        |  |
|                                                        | Kelly R. Phillips           |  |
|                                                        | Kim Epperson                |  |
| Crofoot MD Clinic and Research Center                  | Gordon E. Crofoot           |  |
|                                                        | Derek Smith                 |  |
|                                                        | Juston Baze                 |  |
| Desmond Tutu Health Foundation                         | Richard Kaplan              |  |
|                                                        | Yashna Singh                |  |
|                                                        | Vanessa Simkins             |  |
| Emory University Hospital Midtown                      | Kimberly Workowski          |  |
|                                                        | Gary Friend                 |  |
| Emory University — Ponce de Leon Center Clinical       | Valeria D. Cantos           |  |
| Research Site HIV/AIDS Clinical Trials Unit            | Cherelle Morris             |  |
|                                                        | Betsy Hall                  |  |
| Faculty of Medicine Ramathibodi Hospital               | Sasisopin Kiertiburanakul   |  |
|                                                        | Sira Korpaisarn             |  |
|                                                        | Laor Nakgul                 |  |
| Fenway Health Medical Clinic                           | Kenneth H. Mayer            |  |
|                                                        | Taimur Khan                 |  |
|                                                        | Manasi Dandekar             |  |
| Foundation for Professional Development                | Joanne Batting              |  |
|                                                        | Linamandla Douglas          |  |
|                                                        | Valmy Craffert              |  |
| Fundação Oswaldo Cruz — Instituto Nacional de          | Beatriz Grinsztejn          |  |
| Infectologia Evandro Chagas                            | Larissa Villela             |  |
|                                                        | Egydio Sampaio              |  |
| Fundación Huésped                                      | Pedro Cahn                  |  |
|                                                        | Maria Ines Figueroa         |  |
| Henry Ford Hospital                                    | Indira Brar                 |  |
|                                                        | Smitha Gudipati             |  |
|                                                        | Megan Kothari               |  |

| Institution                                         | Team Members                         |  |
|-----------------------------------------------------|--------------------------------------|--|
| HIV-NAT, Thai Red Cross AIDS Research Centre        | Anchalee Avihingsanon                |  |
| and Center of Excellence in Tuberculosis            | Hay Mar Su Lwin                      |  |
|                                                     | Titikan Srisamon                     |  |
| Hospital das Clínicas da Faculdade de Medicina da   | Ricardo Vasconcelos                  |  |
| Universidade de São Paulo                           | Ferdinando Menezes                   |  |
|                                                     | Karine Milani                        |  |
| Hospital General de Agudos José María Ramos Mejía   | Marcelo H. Losso                     |  |
|                                                     | Guillermo A. Viloria                 |  |
|                                                     | Isabel Pastor                        |  |
| Hospital Geral de Nova Iguaçu / AIDS and Molecular  | Jose Henrique Pilotto                |  |
| Immunology Laboratory / IOC / Fiocruz               | Luis Eduardo Barros Campos Fernandes |  |
|                                                     | Aline Ramalho                        |  |
| Hospital Nossa Senhora da Conceição                 | Breno Santos                         |  |
| 1 7                                                 | Marineide Goncalves de Melo          |  |
|                                                     | Rita Lira                            |  |
| Howard Brown Health Sheridan                        | Catherine Creticos                   |  |
|                                                     | Kathva Chartre                       |  |
|                                                     | Ebony Phillips                       |  |
| Institute of HIV Research and Innovation — Pribta   | Nittava Phanuphak                    |  |
| Tangerine Clinic                                    | Supanat Thitipatarakorn              |  |
| 6                                                   | Siriporn Nonenov                     |  |
| Instituto de Investigaciones Clínicas Mar del Plata | Gonzalo Corral                       |  |
|                                                     | Antonela Bobatto                     |  |
|                                                     | María Luján Álvarez                  |  |
| Jackson Memorial Hospital, University of Miami      | Susanne Doblecki-Lewis               |  |
| Miller School of Medicine                           | Laura Beauchamps                     |  |
|                                                     | Claudia Santos                       |  |
| Johns Hopkins University School of Medicine         | Allison L. Agwu                      |  |
| ······                                              | Errol Fields                         |  |
|                                                     | Jessica Coleman                      |  |
| KC Care Health Center — Midtown                     | Craig Dietz                          |  |
|                                                     | Blair Thedinger                      |  |
|                                                     | Kelly Keller                         |  |
| Loma Linda University Medical Center                | Jennifer Veltman                     |  |
|                                                     | Richelle Guerrero-Wooley             |  |
|                                                     | Danielle Gincastro                   |  |
| Louisiana State University Health Sciences Center   | Meredith Clement                     |  |
|                                                     | Rebecca Lillis                       |  |
|                                                     | Sharon Weiser                        |  |
| Medical University of South Carolina                | Fric G Meissner                      |  |
|                                                     | Betsy Hopkins                        |  |
|                                                     | Jamila Williams                      |  |
| Meharry Medical College                             | Vladimir Berthaud                    |  |
|                                                     | Sheena Simon                         |  |
|                                                     | Glory Stanton                        |  |
| Midway Immunology and Research Center               | Moti Ramgonal                        |  |
| intervery minimulorogy and resourch conter          | Brenda Jacobs                        |  |
|                                                     | Carly Sharp                          |  |
| Mills Clinical Research                             | Tony Mills                           |  |
|                                                     | Tony Willis                          |  |

| Institution                                   | Team Members                     |  |
|-----------------------------------------------|----------------------------------|--|
|                                               | Michael Hirsch                   |  |
|                                               | Nelson Guzman                    |  |
| Mount Sinai Downtown CRS                      | Michelle Cespedes                |  |
|                                               | Tarashon Broomes-Pennicott       |  |
|                                               | Helen May Seedhom                |  |
| Norton Infectious Diseases Institute          | Leffrey S Reeves                 |  |
| Torton infectious Diseases institute          | Merilda Blanco-Guzman            |  |
|                                               | Trevor Hass                      |  |
| Open Arms Healtheare Center                   | James W. Galbraith               |  |
| Open Arms relative Center                     | Kaith I Stokes                   |  |
|                                               | Ruran V. Buck                    |  |
| Ontinue Medical Crown/StudyOng                | Shown K. Hassler                 |  |
| Optimus Medical Group/StudyOps                | Shawn K. Hassler                 |  |
|                                               | Lucas French                     |  |
|                                               | Sloane Pennington                |  |
| Orlando Immunology Center                     | Edwin DeJesus                    |  |
|                                               | Charlotte-Paige Rolle            |  |
|                                               | Janiza Veloz                     |  |
| Penn Medicine — Perelman Center for Advanced  | Ian Frank                        |  |
| Medicine                                      | Debora Dunbar                    |  |
|                                               | Eileen Donaghy                   |  |
| Peter Shalit MD and Associates                | Peter Shalit                     |  |
|                                               | Jonathan White                   |  |
|                                               | Nicole Lanz                      |  |
| Philadelphia FIGHT Community Health Centers — | Karam Mounzer                    |  |
| Jonathan Lax Treatment Center                 | Jay Kostman                      |  |
|                                               | Emily Hiserodt                   |  |
| Prisma Health Richland Hospital               | Kamla Sanasi-Bhola               |  |
| *                                             | Helmut Albrecht                  |  |
| Saint Michael's Medical Center                | Jihad Slim                       |  |
|                                               | James P. Fallon                  |  |
|                                               | Maria Elaine Y. Szabela          |  |
| San Francisco Department of Public Health     | Hyman Scott                      |  |
| 1                                             | Susan Buchbinder                 |  |
|                                               | Christopher Britton              |  |
| Setshaba Research Centre                      | Morakane Alicia Caroline Makwela |  |
|                                               | Zinhle Avanda Zwane              |  |
|                                               | Katlego Crishelda Modiba         |  |
| South Jersey Infectious Disease               | Christopher Lucasti              |  |
| Srinagarind Hospital                          | Ploenchan Chetchotisakd          |  |
| Simugumu nospitui                             | Siriluck Anunnatsiri             |  |
|                                               | Parichat Saewsirikul             |  |
| St. Juda Children's Descenab Hagnital         | A ditua Cour                     |  |
| St. Jude Children's Research Hospital         | Autya Gaur<br>Cina Sabhatini     |  |
|                                               | Mary Dillard                     |  |
| The Hang Clinic of Emerge Hairs with          | Callean E. Kaller                |  |
| The Hope Clinic of Emory University           | Conteen F. Kelly                 |  |
|                                               | Cassie Grimsley Ackerley         |  |
|                                               | Katherine Al-Haroun              |  |
| The Ohio State University College of Medicine | Jose A. Bazan                    |  |
|                                               | Susan L. Koletar                 |  |

| Institution                                      | Team Members                |  |
|--------------------------------------------------|-----------------------------|--|
|                                                  | Lindsay Summers             |  |
| Therafirst Medical Center                        | Anthony LaMarca             |  |
|                                                  | Ryan LaMarca                |  |
| UNC Global HIV Prevention and Treatment Clinical | Lina Rosengren-Hovee        |  |
| Trials Unit                                      | Joseph J. Eron Jr.          |  |
|                                                  | Matthew Newell              |  |
| Universidade Federal de Minas Gerais             | Jorge Pinto                 |  |
|                                                  | Juliet Caporali             |  |
|                                                  | Flavia Ferreira             |  |
| Universidade Federal de São Paulo                | Ricardo Sobhie Diaz         |  |
|                                                  | Letícia F. Baptista         |  |
|                                                  | Daniele L. Cunha            |  |
| University of Alabama at Birmingham              | Olivia T. Van Gerwen        |  |
|                                                  | Christina A. Muzny          |  |
|                                                  | Angela Pontius              |  |
| University of California Los Angeles (UCLA)      | Jesse Clark                 |  |
|                                                  | Elvin Luccon                |  |
|                                                  | Christopher Blades          |  |
| University of California San Diego — Antiviral   | Jill Blumenthal             |  |
| Research Center                                  | Gabriel Wagner              |  |
|                                                  | Terence Hendrix             |  |
| University of Cincinnati Health Holmes Hospital  | Moises A. Huaman            |  |
|                                                  | Shanna D. Stryker           |  |
|                                                  | Michelle Saemann            |  |
| University of Illinois Medical Center            | Richard M. Novak            |  |
|                                                  | Andrew Trotter              |  |
|                                                  | Diana Bahena                |  |
| Via Libre                                        | Jose Gabriel Vasquez-Cerro  |  |
|                                                  | Yvett Pinedo-Ramirez        |  |
|                                                  | Karina Leonor Espinoza Maza |  |
| Wake Forest University Baptist Medical Center    | Caryn G. Morse              |  |
|                                                  | John Williamson             |  |
|                                                  | Rica M. Abbott              |  |
| Whitman-Walker Health                            | Namrata Shah                |  |
|                                                  | Megan Dieterich             |  |
|                                                  | Katrina McCutcheon          |  |
| Wits Reproductive Health and HIV Institute (Wits | Nkosiphile Ndlovu           |  |
| RHI)                                             | Thesla Palanee-Phillips     |  |
|                                                  | La-Donna Mohau Kapa         |  |
| Yale New Haven Hospital                          | Onyema Ogbuagu              |  |
|                                                  | Jessica Tuan                |  |
|                                                  | Grace Igiraneza             |  |

| Member                       | Institution                                              |  |
|------------------------------|----------------------------------------------------------|--|
| Blossom C. Brown, BSc        | Mississippi University for Women                         |  |
| Shawn Demmons, MPH           | Director, Pacific AIDS Education & Training Center — Bay |  |
|                              | Area Region                                              |  |
| Luis Gutierrez-Mock, MPH, MA | University of California, San Francisco Division of      |  |
|                              | Prevention Sciences                                      |  |
| Isa-Lee Love Jones-René, BA  | MIMIS House of Blue                                      |  |
| JoAnne G. Keatley            | Retired, Director Emeritus: UCSF CoE Transgender         |  |
|                              | Health                                                   |  |
| Arianna Lint                 | ALINC Consulting — Arianna's Center                      |  |
| Dr Thulani E. Mhlongo        | National LGBTI Health Campaign                           |  |
| Sivuyisiwe Sive Mredlane     | Dear Young Queen Foundation                              |  |
| Charles Peterson             | Neelyx Labs                                              |  |
| Jenna Rapues, MPH            | San Francisco Department of Public Health, Gender        |  |
|                              | Health SF                                                |  |
| Quinton Reynolds, AAS        | Game Changing Men Inc                                    |  |
| Senzokuhle C.S. Shibase      | National LGBTI Health Campaign                           |  |
| Martez D. Smith, PhD, LMSW   | HIV Center for Clinical and Behavioral Studies, Columbia |  |
|                              | University                                               |  |
| Thiago Silva Torres          | Instituto Nacional de Infectologia Evandro Chagas,       |  |
|                              | Fundação Oswaldo Cruz, Rio de Janeiro, Brazil            |  |
| Leonashia Leigh-Ann van der  | Social, Health & Empowerment Feminist Collective of      |  |
| Merwe                        | Transgender Women                                        |  |
| Jana Villayzan Aguilar       | RED TRANS PERU/ IRGT                                     |  |
| S. Wakefield                 | PrEP Consumer                                            |  |
| Toi Washington-Reynolds      | Trans Women Of Color Healing, Tyrone, Georgia            |  |
| Panyaphon Phiphatkhunarnon   | Love Foundation, Thailand                                |  |

# **Global Community Advisory Group**

# **Supplementary Methods**

# Rationale for the Study Design

A novel study design based on estimation of the counterfactual (i.e., background) HIV incidence rates was pursued to overcome the challenges of assessing efficacy of novel pre-exposure prophylaxis (PrEP) agents. Because there are effective options for PrEP approved for cisgender men and transgender women, placebo-controlled trials are not acceptable. Traditional noninferiority trials are also infeasible due to the large sample sizes and long duration of follow-up required to observe sufficient end points to achieve statistical power for comparison. Finally, superiority trials can be considered, but superiority may not be a reasonable expectation for all new PrEP agents as the F/TDF efficacy is very high, especially when participants adhere to their daily oral regimen (participant behavior). Therefore, working with a broad consortium of field experts from academia, regulatory agencies, and pharmaceutical innovators, we developed and implemented the design presented here.<sup>1</sup>

The study design is structured in multiple phases with structured transitions: the Incidence Phase, the Randomized Blinded Phase (RBP), the lenacapavir Open-Label Extension (OLE) Phase, and the Pharmacokinetic (PK) Tail Phase. Participants who complete each phase will be offered to transfer to the next phase (sequentially as listed).

The background HIV incidence (bHIV), computed based on the recency assay results collected from participants diagnosed with HIV-1 in the Incidence Phase using a Recent Infection Testing Algorithm (RITA), will serve as the primary comparator for evaluating the efficacy of the experimental study drug included in the RBP. Following the RBP, there are two standard design elements: the lenacapavir OLE Phase allows for further long-term efficacy and safety follow-up, and the PK Tail Phase, which is standard for long-acting HIV prevention drugs, provides known efficacious open-label oral PrEP to provide HIV prevention for participants during the time when lenacapavir concentrations may have declined to sub-protective levels following subcutaneous (SC) lenacapavir administration during the RBP or lenacapavir OLE Phase.

## HIV Diagnostic Testing and Case Adjudication

HIV testing was performed at both the local site and a central laboratory. At screening and on Day 1, participants underwent a rapid, point-of-care HIV-1/2 antibody/antigen test (using Determine<sup>TM</sup>, Abbott) at the trial site, along with a centralized, instrumented, fourth-generation HIV-1/2 antibody/antigen test (Siemens) and a quantitative HIV RNA nucleic acid amplification test (NAAT) using the Cobas 6800 system.

For follow-up visits, the testing protocol included the rapid fourth-generation HIV-1/2 antibody/antigen test at the local site and a repeat of the instrumented fourth-generation

antibody/antigen test at the central laboratory. If the central laboratory returned a positive result, confirmation was done using the HIV-1/2 antibody differentiation assay (Geenius<sup>TM</sup> HIV 1/2 Supplemental Assay). Any conflicting or uncertain results from serological tests were further analyzed using a qualitative HIV RNA NAAT (Cobas Ampliprep-cobas TaqMan 2.0). A detailed outline of the HIV testing process is shown in Figure S1.

For participants diagnosed with a new HIV infection during the study, stored samples from prior visits were analyzed retrospectively using quantitative HIV RNA NAAT to confirm the diagnosis. An HIV Adjudication Committee, who were blinded to the treatment groups, reviewed all positive HIV test results that were obtained after the initial screening. Decisions on whether the test results indicated an actual HIV infection, a false positive, or results requiring further investigation were made by majority vote.

The panel also determined the date of diagnosis for each HIV case, defining it as the earliest study visit where evidence of infection was present. This included both prospective results from routine tests and any additional retrospective RNA testing with standard HIV RNA-1 testing. Cases were classified as incident HIV infections if they were diagnosed after Day 1 (the day of randomization), or as baseline cases if they were identified on Day 1. As anticipated, some false-positive results occurred during the trial. These cases were evaluated using additional quantitative RNA testing. A rapid HIV test was classified as a false-positive if the central laboratory's fourth-generation antibody/antigen test was negative and if a simultaneous quantitative HIV RNA test showed no detectable virus. Additionally, a positive result from the central laboratory antibody/antigen test was deemed a false positive if two consecutive quantitative HIV RNA tests, one taken at the same time and another follow-up test, both showed "none detected" results. HIV-1 RNA single-copy assay was also performed retrospectively on samples from prior to HIV-1 diagnosis (Accelevir Diagnostics, Baltimore, MD).

The three voting members of the HIV adjudication committee were infectious disease physicianscientists from HIV Clinical Development who were blinded to randomization assignment:

Jared Baeten, MD, PhD (Senior Vice President, Clinical Development)

Moupali Das, MD, MPH (Vice President, Clinical Development)

Sean Collins, MD (Senior Director, Clinical Development)





Adapted from CDC HIV testing algorithm.<sup>2-4</sup> Quantitative HIV-1 RNA NAAT, performed for all participants during screening and on Study Day 1, is not depicted in the algorithm for simplicity.

## Adherence Counseling and Support

To support participant adherence, study sites developed tailored adherence counseling programs aligned with national and global PrEP guidelines. These programs were adjusted for local settings and participant populations. Pill counts were performed during each visit, and self-reported adherence data were collected through protocol-defined questionnaires. Participants received ongoing adherence counseling, as well as condoms and lubricants at each visit. Participants were considered adherent to lenacapavir if injections were administered within 28 weeks of the prior injection. Participants who delayed injections beyond 28 weeks were required to undergo a repeat baseline HIV testing procedure and receive a reloading dose of oral lenacapavir before resuming injections.

## Site-Specific Recruitment Plans

Site-specific recruitment plans were developed to facilitate the recruitment of diverse (race, ethnicity, and gender) study participants at each site. First, we reviewed the local epidemiology based on US CDC data for metropolitan statistical area (including consultation with key scientists and epidemiology experts in local transgender HIV incidence data) in the United States and relevant local HIV incidence/recent HIV infection data in ex-US countries. Then we developed the individual recruitment plans in collaboration with each site investigator and their research team in order to reflect the demographics and the HIV incidence in gay, bi, and other men who have sex with men has declined significantly, the decision may be to focus only on enrolling transgender women, who have not had such declines in HIV incidence. Individual plan numbers were designed to add up to the US and global goals for recruitment. For other cities in the U.S. South, for example, where rates in gay, bi, and other men who have sex with men remain high, particularly among persons of color, we focused recruitment on these groups. The study team regularly reviewed site enrollment (weekly during active enrollment) and provided feedback to individual sites to ensure the demographics of focus were being actively enrolled.

## Social Harms Reporting and Support for Participants

Study participants were asked about any social harms experienced at every study visit. If a social harm was reported by a participant a case manager or social worker provided counselling and work with the participant to develop a follow-up plan, including referral to appropriate resources. Any new social harms reported were documented in the study case report forms. Sites were also required to document the provided counselling, care, and referral to appropriate resources. The availability of local resources was confirmed with all sites during the site selection process.

If a participant reported intimate partner violence (IPV) during a study follow-up visit all study sites had protocols in place to connect participants with comprehensive services, including legal advice, emotional support, and social assistance.

# **Excerpts from the PURPOSE 2 Full Statistical Analysis Plan**

## Analysis of the Primary Efficacy Endpoint

#### **Definition of HIV-1 Infection**

#### Incidence Phase HIV-1 Infection

Identification of prevalent HIV-1 cases in the Incidence Phase necessitates a case definition that allows for the identification and inclusion of acute HIV-1 cases (which may have not yet seroconverted) while minimizing the risk of including participants with false positive HIV-1 testing. To this end, considering the cross-sectional characteristics of this phase, we define HIV-1 cases in the Incidence Phase as those having at least one of the following lab results at the Incidence Phase screening visit:

- a. Positive HIV-1/2 differentiation Ab, OR
- b. Positive HIV-1 RNA qualitative test, OR
- c. HIV-1 RNA quantitative test  $\geq$ 200 copies/mL.

Notably, HIV-1/2 differentiation and HIV-1 RNA qualitative tests are confirmatory tests per the study protocol's HIV testing procedures and are therefore only performed when central laboratory HIV-1/2 Ab/Ag testing is positive. The use of HIV-1 RNA quantitative test to assess for acute HIV-1 infection is CDC guideline recommended, and HIV-1 RNA quantitative test results of  $\geq$ 200 copies/mL are unlikely to be a false positive result.<sup>6</sup>

### **HIV-1 Infection for Randomized Participants**

This study engages an HIV adjudication committee who will review potential HIV-1 infection events in the randomized participants. The committee will, in a blinded, consistent, and unbiased manner, adjudicate and confirm both the diagnosis of each HIV-1 infection (identifying false positive HIV-1 cases) and the date of each diagnosis and when necessary, pinpoint the earliest diagnosis date by back-testing archived samples. This process could identify cases with confirmed HIV-1 diagnosis that occur on or prior to Day 1 (i.e., cases where HIV was present at baseline). The roles and responsibilities of the committee are detailed in the HIV Adjudication Committee Charter.

The adjudicated HIV-1 diagnosis and date will be used for all planned reports including the formal interim efficacy analysis (DMC reports), and clinical study reports (primary or any post-primary).

#### **Estimation of HIV-1 Incidence**

Incidence Phase

For the Incidence Phase of this study, the bHIV will be reported per 100 PY for the All Screened Set based on a RITA using an HIV1 incidence formula similar to Kassanjee et al 2012<sup>7</sup>, adjusting for participants with HIV-1 who may not have recency results (See Figure S2).

*Figure S2. A High-Level Screening Schema and Contribution of Participants to the Estimation of the bHIV* 



The following are the notations.

*N*: Total number of participants screened

 $N_{-}$ : number of participants who test negative

 $N_+$ : number of participants who test positive

 $N_{+,test}$ : number of positive participants who have recency outcomes available  $N_{rec}$ : number of recent infections as classified by the RITA

The bHIV will be estimated by the formula:

$$\hat{\lambda}_0 = \frac{N_{rec}/(N_{+,test}/N_+) - \beta N_+}{N_-(\Omega - \beta T)}$$

T: cutoff time (eg, 2 years) for the definition of true recent infections

 $\beta$ : FRR

The variance of  $\hat{\lambda}_0$  in the log scale  $\hat{\sigma}_{\log(\hat{\lambda}_0)}^2$  will be estimated by the delta method, as provided by Gao et al 2021<sup>8</sup> (see below), considering the variance of  $\Omega$ ,  $\beta$ , and the observed counts of  $N_-$ ,  $N_{+,test}$ ,  $N_{rec}$ :

$$\begin{aligned} \hat{\sigma}_{\log(\hat{\lambda}_{0})}^{2} &= \frac{N_{rec}(N_{+,test} - N_{rec})}{N_{+,test}(N_{rec} - N_{+,test}\beta)^{2}} + \frac{N}{N_{+}N_{-}} + \sigma_{\beta}^{2} \frac{N_{+,test}(N - N_{+,test})}{N(N_{rec} - N_{+,test}\beta)^{2}} \\ &+ \frac{\sigma_{\Omega}^{2}}{(\Omega - \beta T)^{2}} + \sigma_{\beta}^{2} \left[ \frac{N_{+,test}\Omega - N_{rec}T}{(N_{rec} - N_{+,test}\beta)(\Omega - \beta T)} \right]^{2} \end{aligned}$$

The  $(1 - \alpha) \times 100\%$  confidence interval (CI) for  $\log(\lambda_0)$  will be constructed as  $\log(\hat{\lambda}_0) \mp z_{\alpha/2} \hat{\sigma}_{\log(\hat{\lambda}_0)}$ , and the  $(1 - \alpha) \times 100\%$  CI for  $\lambda_0$  will be  $\hat{\lambda}_0 \exp\left(\mp z_{\alpha/2} \hat{\sigma}_{\log(\hat{\lambda}_0)}\right)$ . Here  $z_{\alpha/2}$  is the  $(\alpha/2)$ -th upper quantile of the standard normal distribution.

#### Choice of Recency Assay, Assay Parameters and Algorithm Parameters

The Sedia LAg-EIA will be the primary recency assay as it is the most widely used and has been field validated. The number of recent infections  $N_{rec}$  will be classified based on the RITA.<sup>9</sup> A participant, diagnosed with HIV-1, will be counted as a recent infection if the normalized optical density (ODn) is below the 1.5 threshold, provided that the HIV-1 RNA viral load is above the cutoff of 75 copies/mL. Table S1 presents the recency outcome from the RITA.

The ODn threshold of 1.5 has been recommended by the Forum for Collaborative Research Recency Assay Working Group (RAWG) in their closing publication<sup>1</sup>, by Duong et al 2015<sup>10</sup>, the CDC<sup>11</sup> and the Sedia LAg-EIA package insert.

Although the study's eligibility criteria do not allow people who know that they have acquired HIV-1 to be screened, the RITA includes a viral load cutoff of 75 copies/mL to help prevent the overestimation of bHIV by reducing the number of false recent samples from people living with HIV who are virologically suppressed on antiretroviral therapy. When virologically suppressed people with HIV-1 are inadvertently screened, the avidity of their antibodies can be reduced due

to the limited exposure of the immune system to actively replicating HIV-1 which can then lead to an inaccurate recent infection result in the Sedia LAg-EIA. The viral load cutoff used in the RITA must be above the limit of detection of the immunoassay used for determination of the HIV-1 infection, which is 20 copies/mL. Recency assay parameters (MDRI, FRR, etc.) were calculated for a range of viral load cutoffs by Kassanjee et al 2016<sup>9</sup> and the lowest cutoff above 20 copies/mL, that is, 75 copies/mL was chosen for use in the RITA for this study. If a screened participant with HIV-1 has a viral load lower than or equal to the cutoff, the participant will be considered as not recently infected and will be counted in  $N_{+,test}$ , regardless of the Sedia LagEIA test result, or whether the Sedia LAg-EIA result is available. If an HIV-1 positive participant's viral load is above the cutoff but the ODn- is missing, the participant will be considered as having undeterminable recency outcome, hence excluded from  $N_{+,test}$  and  $N_{rec}$ but will be included in  $N_+$ . If a participant's viral load is missing, the participant will be excluded from  $N_{+,test}$  and  $N_{rec}$ , but included in  $N_+$ . See Table S1 for details.

| HIV-1 Recency Test ODn |            |            |                |
|------------------------|------------|------------|----------------|
| HIV-1 RNA              | ≤ 1.50     | >1.50      | Missing ODn    |
| > 75 copies/mL         | Recent     | Not Recent | Undeterminable |
| $\leq$ 75 copies/mL    | Not Recent | Not Recent | Not Recent     |

|  | Tak | ole | <i>S1</i> . | Reco | ency | Outco | ome | from | the | Rl | TA |
|--|-----|-----|-------------|------|------|-------|-----|------|-----|----|----|
|--|-----|-----|-------------|------|------|-------|-----|------|-----|----|----|

For the RITA, if a participant's HIV-1 RNA is missing or recency outcome is undeterminable, it will be excluded from  $N_{+,test}$ , but will still be included in  $N_+$ . For participants who may have multiple HIV test visits, only tests done at the first HIV test date at Incidence Screening will be used for determining the recency outcome. For the primary analysis, the assay parameters given by Kassanjee et al 2016<sup>9</sup> will be used for bHIV estimation. The sample size calculation in the protocol was also based on Kassanjee et al 2016<sup>9</sup> with T = 2 years for pooled samples.

| Subtype | MDRI  |         | <b>FRR</b> <sup>b</sup> |                 |
|---------|-------|---------|-------------------------|-----------------|
|         | Days  | rSE (%) | %                       | rSE (%)         |
| А       | 170   | 17.3    | 2.7                     | 98.7            |
| В       | 146   | 13.1    | 1.3                     | 98.7            |
| С       | 163   | 8.3     | 1.4                     | 100.3           |
| D       | 241   | 22.5    | 0.0                     | NA <sup>c</sup> |
| AE      | 172.6 | 9.93    | 0.0                     | NA <sup>c</sup> |

Table S2. MDRI and FRR (Kassanjee et al,  $2016^9$ , T = 2 Years)<sup>a</sup>

Source: Assay parameters for subtypes A, B, C and D are from Kassanjee et al 2016<sup>9</sup>, parameters for subtype AE are not available in Kassanjee et al 2016<sup>9</sup>, and are estimated using R package "inctools" (https://cran.r-project.org/web/packages/inctools/inctools.pdf) based on data from Klock et al 2020<sup>12</sup>.

<sup>a</sup> Based on the Sedia LAg-EIA and RITA cutoffs in Table S1 (i.e., an infection classified as recent if  $ODn \le 1.5$  and HIV-1 RNA viral load > 75 copies/mL).

<sup>b</sup>For untreated participants.

°For FRR=0%, rSE cannot be calculated; in this case, a standard error (instead of rSE) of zero will be used in the bHIV calculations. Note: The Sedia LAg-EIA package insert refers to an MDRI of 130 days (95% CI 118-142, or rSE = 4.7%) and an FRR of <1% for T = 1 using ODn cutoff of 1.5 and HIV-1 RNA viral load cutoff of 1000 copies/mL.

Since subtype data will not be available for analysis, we will use country, as a correlate, to estimate the percentage of each subtype instead. Based on a literature review for the geographical distribution of our study sites, we assume all HIV-1 infections from South Africa to be subtype C, all infections from Mexico, United States, Peru, and Argentina to be subtype B, infections from Thailand to be 12% subtype B and 88% subtype AE, and infections from Brazil to be 92% subtype B and 8% subtype C.

The MDRI used in estimating the bHIV for this study will be calculated as the weighted average of the MDRI for the subtypes included in the study. More specifically, let w1, w2, w3, w4, w5, w6, w7 be the proportion of HIV-1 infections from South Africa, Mexico, United States, Peru, Thailand, Argentina, and Brazil, respectively. The distribution of the three subtypes is:

Subtype B: w2+w3+w4+0.12w5+w6+0.92w7 Subtype C: w1+0.08w7 Subtype AE: 0.88w5

Let  $\Omega_B$ ,  $\Omega_C$ ,  $\Omega_{AE}$  be the MDRI for the subtypes B/C/AE, and  $\sigma_{\Omega,B}$ ,  $\sigma_{\Omega,C}$ ,  $\sigma_{\Omega,AE}$  be the corresponding standard errors, which will be computed as the product of MDRI and the rSE of the MDRI in

Table S. The overall MDRI will be estimated by

 $\Omega = (w_2 + w_3 + w_4 + 0.12w_5 + w_6 + 0.92w_7)\Omega_B + (w_1 + 0.08w_7)\Omega_C + 0.88w_5\Omega_{AE}.$ And the standard error of the overall MDRI will be estimated by  $\sigma_{\Omega}$ 

$$= \sqrt{(w_2 + w_3 + w_4 + 0.12w_5 + w_6 + 0.92w_7)^2 \sigma_{\Omega,B}^2 + (w_1 + 0.08w_7)^2 \sigma_{\Omega,C}^2 + (0.88w_5)^2 \sigma_{\Omega,AE}^2}.$$
  
The rSE of the overall MDRI will be calculated as  $\sigma_{\Omega}/\Omega$ , reported as a percentage (%).

The overall FRR will be estimated by the weighted average of the FRR for the subtypes. Let  $\beta_B$ ,  $\beta_C$ , and  $\beta_{AE}$  be the FRR for the subtypes B/C/AE, and  $\sigma_{\beta,B}$ ,  $\sigma_{\beta,C}$ , and  $\sigma_{\beta,AE}$  be the corresponding standard errors, which will be computed as the product of the FRR and the rSE of the FRR in Table S. The overall FRR will be estimated by

$$\beta = (w_2 + w_3 + w_4 + 0.12w_5 + w_6 + 0.92w_7)\beta_B + (w_1 + 0.08w_7)\beta_C + 0.88w_5\beta_{AE}.$$

And the standard error of the overall FRR will be estimated by

$$\sigma_{\beta}$$

$$= \sqrt{(w_2 + w_3 + w_4 + 0.12w_5 + w_6 + 0.92w_7)^2 \sigma_{\beta,B}^2 + (w_1 + 0.08w_7)^2 \sigma_{\beta,C}^2 + (0.88w_5)^2 \sigma_{\beta,AE}^2}.$$

The rSE of the overall FRR will be calculated as  $\sigma_{\beta}/\beta$ , reported as a percentage (%). It should be noted that the FRR has been shown to be zero<sup>1,9</sup> for antiretroviral therapy (ARV)treated HIV-1-positive participants but this is a PrEP trial and the ARV-treated participants and those on PrEP at screening should be excluded by the eligibility criteria. Hence, Table SS2 only lists FRRs for untreated participants. However, the possibility that a few, ARVtreated participants may be screened, cannot be ruled out. For the primary efficacy analysis using T = 2 years, we will conservatively use the untreated FRR for all participants in calculating the bHIV.

#### While Participants are At-Risk of HIV-1 Infection in Study

The HIV-1 incidence will be reported per 100 PY in lenacapavir and F/TDF study drug groups while at-risk of HIV-1 infection in study.

The HIV-1 incidence in lenacapavir and F/TDF study drug groups will be estimated using a method appropriate for a single Poisson rate based on the FAS. The HIV-1 incidence  $\lambda_1$  will be estimated by the number of HIV-1 infections in study divided by the total follow-up time in study for each arm. Here "in study" includes postbaseline time in study [including the RBP and follow-up time of participants who discontinue the randomized blinded study drug early (regardless of reason) and may receive OL oral PrEP administered via the PK Tail Phase or stopped taking any PrEP during the study].

The exact  $(1 - \alpha) \times 100\%$  CI for  $\lambda_1$  will be constructed as follows:<sup>13</sup>

$$(L_l, L_u) = \left(\frac{\chi^2_{2Y, \frac{\alpha}{2}}}{2D}, \frac{\chi^2_{2(Y+1), 1-\frac{\alpha}{2}}}{2D}\right).$$

Here  $(L_l, L_u)$  is the lower and upper bound of the exact CI. *Y* is the observed number of infections, *D* is the total follow-up time, and  $\chi^2_{\nu,\alpha}$  is the chi-square quantile for lower tail probability  $\alpha$  on  $\nu$  degrees of freedom. In the case where Y = 0, the lower bound  $L_l$  will be set to 0.

The standard error of the incidence estimate  $\hat{\lambda}_1$  in the log scale  $\hat{\sigma}_{\log(\hat{\lambda}_1)}$  will be estimated by  $1/\sqrt{Y}$ , based on the Poisson assumption.<sup>8</sup>

#### Definition of Duration of At-Risk of HIV-1 Infection in Study

Duration of at-risk of HIV-1 infection in the study is defined as the time from Day 1 (first dose date) through the last at-risk of HIV-1 infection date in the study (last at-risk of HIV-1 infection date in study – Day 1 date +1).

Duration of time at-risk of HIV-1 infection in the study will be summarized, in weeks, using descriptive statistics (n, mean, SD, median, Q1, Q3, minimum, maximum and total person-years) and as the number and percentage of participants at risk of HIV-1 infection in study for specified periods, i.e.,  $\geq 4$  weeks (28 days),  $\geq 8$  weeks (56 days),  $\geq 13$  weeks (91 days),  $\geq 26$  weeks (182 days),  $\geq 39$  weeks (273 days),  $\geq 52$  weeks (364 days),  $\geq 65$  weeks (455 days),  $\geq 78$  weeks (546 days),  $\geq 91$  weeks (637 days),  $\geq 104$  weeks (728 days),  $\geq 117$  weeks (819 days),  $\geq 130$  weeks (910 days), etc.

#### **Intercurrent Events**

On December 20, 2021, the administration of lenacapavir SC injection was put on clinical hold, pausing the screening, and enrollment of new participants and continued dosing of injectable lenacapavir for ongoing participants. Ongoing participants in the study, treated on or prior to December 21, 2021, whose next SC injection visit occurred during the clinical hold were either switched to open-label F/TDF or open-label F/TAF prior to Protocol Amendment 2, or switched to blinded oral weekly LEN/PTM bridging study drug (instead of lenacapavir SC or placebo injections every 6 months) according to their original randomized study drug assignment after Protocol Amendment 2.

This clinical hold and early discontinuation of study drug will be considered intercurrent events during the RBP. However, consistent with the ITT approach, these intercurrent events will be handled with a treatment policy strategy for the primary efficacy evaluations, meaning that participant outcomes will be included in the analysis whether or not the intercurrent event occurred.

#### General Considerations of Analyses of the Primary Efficacy Endpoint

A formal interim efficacy analysis will be performed after 50% of participants enrolled have completed at least 52 weeks of follow-up in the study or have prematurely discontinued from the

study (50th percentile randomized participant has reached Week 52 or prematurely discontinued from the study).

### **Efficacy Evaluations**

A high-level description of efficacy objectives and analyses is presented in Table S3 to frame the efficacy analysis plan detailed in later sections.

|                                                                         |                                                  | <b>Population-</b>             |                                                                                                                                                   |
|-------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         |                                                  | Level                          | Analysis Period &                                                                                                                                 |
| Objectives                                                              | Analysis Set                                     | Summary                        | Intercurrent Events (ICE)                                                                                                                         |
| Primary:<br>To evaluate the                                             | Incidence Phase: All<br>Screened Set             | Pata Patio:                    | bHIV: In the Incidence Phase<br>prior to the first dose date &<br>No applicable ICE                                                               |
| lenacapavir in<br>reducing the risk of<br>HIV-1 infection               | Randomized groups:<br>Full Analysis Set<br>(FAS) | LEN/bHIV                       | LEN: In study regardless of<br>ICEs (the clinical hold and<br>early discontinuation of study<br>drug); a treatment policy<br>strategy             |
| Secondary:<br>To evaluate the<br>comparability of<br>lenacapavir to TVD | FAS                                              | Rate<br>Difference:<br>LEN-TVD | LEN and TVD: In study<br>regardless of ICEs (the<br>clinical hold and early<br>discontinuation of study<br>drug); a treatment policy<br>strategy  |
| Secondary:<br>To evaluate the<br>superiority of<br>lenacapavir to TVD   | FAS                                              | Rate Ratio:<br>LEN/TVD         | LEN and TVD: In study<br>regardless of ICEs (the<br>clinical hold and early<br>discontinuation of study<br>drug); a treatment policy<br>strategy) |

## Table S3. Summary for Key (Alpha-Controlled) Efficacy Evaluations

## Multiple Comparisons

Procedures to control the overall Type I error due to multiple efficacy analyses, one due to multiple hypotheses and the other due to one planned interim efficacy analysis, are described in this section.

#### **Multiple Alpha-Controlled Hypotheses**

There are 4 alpha-controlled efficacy evaluations planned for this study and the null hypothesis for each one is listed below.

For simplicity, lenacapavir and TVD are used to denote the HIV-1 incidences for the lenacapavir arm and F/TDF arm, respectively.

| Objectives               | Null Hypothesis                               | Interpretation for Rejecting Null<br>Hypothesis                                                                             |  |  |
|--------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
|                          | $H_{01}$ : lenacapavir / bHIV $\geq 1$        | HIV-1 incidence in lenacapavir is significantly lower than bHIV                                                             |  |  |
| LEN Primary Objectives   | $H_{02}$ : lenacapavir / bHIV $\ge 0.8$       | HIV-1 incidence in lenacapavir is<br>significantly and at least 20% lower than<br>bHIV and the point estimate LEN/bHIV ≤ 0. |  |  |
| LEN Secondary Objectives | $H_{03}$ : lenacapavir – TVD $\geq$ 0.8/100PY | HIV-1 incidence in lenacapavir is not<br>substantially greater than F/TDF (LEN<br>efficacy is comparable to F/TDF)          |  |  |
|                          | $H_{04}$ : lenacapavir / TVD $\ge 1$          | HIV-1 incidence in lenacapavir is significantly lower than F/TDF                                                            |  |  |

Table S4. Testing Sequence of Null Hypotheses

The overall Type I error will be controlled at one-sided  $\alpha = 0.025$  by following a fixed sequence approach (in the sequential order listed in Table S4).

#### Alpha Spending for Multiple Analyses (Interim and Primary Analyses)

At the interim analysis, the same sequential approach will be utilized at  $\alpha_1 = 0.0026$  (one-sided). The FDA interim stopping criteria are to demonstrate both superiority of lenacapavir versus bHIV, designated  $H_{02}$  with the point estimate of *LEN/bHIV*  $\leq 0.5$ , and superiority of lenacapavir versus F/TDF, designated  $H_{04}$ , at  $\alpha_1 = 0.0026$ . The interim analysis will serve as the primary analysis if the trial meets the stated criteria and stops early.

If the RBP continues to the primary analysis, the null hypotheses  $H_{01}$ ,  $H_{02}$ ,  $H_{03}$  and  $H_{04}$  will be tested sequentially, with boundaries derived based on the Bonferroni method; at level  $\alpha_2 = 0.025 - \alpha_1 = 0.025 - 0.0026 = 0.0224$ . The FDA success criteria for the primary analysis are to demonstrate superiority of lenacapavir versus bHIV, designated  $H_{02}$  with the point estimate of *LEN/bHIV*  $\leq 0.5$ , and comparability of lenacapavir to F/TDF, designated  $H_{03}$ , at  $\alpha_2 = 0.0224$ .

If adequate safety and efficacy of lenacapavir is demonstrated, participants will be given the option to transition to the lenacapavir open-label extension phase of the trial once the RBP is stopped.

#### Efficacy Evaluations for Key (Alpha-Controlled) Statistical Hypotheses

Primary Efficacy Evaluations (Comparison with bHIV)

The primary efficacy evaluation is a comparison of the observed HIV-1 incidence in the lenacapavir arm during the RBP to the bHIV. The statistical hypotheses are:

Null hypothesis:  $H_{01}$ : LEN/bHIV  $\geq 1.0$ Alternative hypothesis: LEN/bHIV < 1.0

It will be concluded that HIV-1 incidence in the lenacapavir group is significantly lower compared to the bHIV if the null hypothesis is rejected in favor of the alternative hypothesis, at an overall 1-sided significance level of 0.025.

Additionally for the primary analysis, the success criteria for the US FDA regulatory review is defined as the HIV-1 incidence rate ratio of at least 20% reduction in the lenacapavir study drug group compared with the bHIV estimated in the Incidence Phase, formulated as the key alpha-controlled  $H_{02}$  (gated on rejection of  $H_{01}$ ) with a point estimate of LEN/bHIV  $\leq 0.5$  and comparability to F/TDF formulated as the key alpha-controlled  $H_{03}$ .

#### **Methods for the Primary Efficacy Evaluations**

The incidence rate ratio of the lenacapavir group  $(\hat{\lambda}_1)$  over the bHIV  $(\hat{\lambda}_0)$  will be calculated, and the associated CI will be estimated using the delta method as provided by Gao et al 2021<sup>8</sup> (see below):

Let *R* denote the incidence rate ratio  $\lambda_1/\lambda_0$ . In log scale,  $\log R$  (ie,  $\log(\lambda_1) - \log(\lambda_0)$ ) can be estimated by  $\log \hat{R} = \log(\hat{\lambda}_1) - \log(\hat{\lambda}_0)$ .  $\log \hat{R}$  has an asymptotic normal distribution<sup>8</sup>:

$$\log \hat{R} \sim N\left(\log R, \hat{\sigma}_{\log(\hat{\lambda}_0)}^2 + \hat{\sigma}_{\log(\hat{\lambda}_1)}^2\right).$$

The  $(1 - \alpha) \times 100\%$  CI for log *R* can then be constructed as  $\log(\hat{\lambda}_1) - \log(\hat{\lambda}_0) \mp$ 

 $z_{\alpha/2}\sqrt{\hat{\sigma}_{\log(\hat{\lambda}_0)}^2 + \hat{\sigma}_{\log(\hat{\lambda}_1)}^2}$ , and the  $(1 - \alpha) \times 100\%$  CI for the incidence rate ratio *R* will be  $\frac{\hat{\lambda}_1}{\hat{\lambda}_0} \exp\left(\mp z_{\alpha/2}\sqrt{\hat{\sigma}_{\log(\hat{\lambda}_0)}^2 + \hat{\sigma}_{\log(\hat{\lambda}_1)}^2}\right)$ . Here  $z_{\alpha/2}$  is the  $(\alpha/2)$ -th upper quantile of the standard normal distribution. The test statistic  $Z = \frac{\log \hat{R} - \log R_0}{\sqrt{\hat{\sigma}_{\log}^2(\hat{\lambda}_0)^+ \hat{\sigma}_{\log}^2(\hat{\lambda}_1)}}$  will be used for hypothesis testing, where  $R_0$  will be set to

1 for testing  $H_{01}$  and set to 0.8 for testing  $H_{02}$ . The 1-sided p-value will be calculated based on the asymptotic normal distribution of Z.

If the number of HIV-1 infections diagnosed in the lenacapavir group is zero, a plausible scenario especially for the interim analysis or the subgroup analysis, the estimated HIV-1 incidence  $\hat{\lambda}_1$  will be zero, and the methods specified above would fail. In this case, the CI and the 1-sided p-value will be estimated using a likelihood-based method proposed by Shao et al 2024.<sup>14</sup>

#### Secondary Efficacy Evaluations (Comparison with F/TDF)

Analysis Methods for Difference in HIV-1 Incidence Rates

Difference in HIV-1 incidence rates will evaluate comparability of lenacapavir relative to F/TDF, that is, null hypothesis  $H_{03}$ . Rejection of this hypothesis will support a conclusion that the HIV-1 incidence in the lenacapavir arm is comparable to F/TDF. In order to test this hypothesis, a CI will be constructed using a hybrid approach recommended by Li et al 2011 with an additional modification to use the exact CI for the single Poisson rate parameter instead of the approximate CI recommended.<sup>15</sup>

Let  $\hat{\lambda}_1, \hat{\lambda}_2$  be the estimates of the HIV-1 incidence rates in the two study drug groups, and let  $(l_1, u_1), (l_2, u_2)$  be the exact  $(1 - \alpha) \times 100\%$  CIs for single Poisson rates<sup>13</sup>:

$$(l_i, u_i) = (\frac{\chi^2_{2Y_i, \alpha/2}}{2D_i}, \frac{\chi^2_{2(Y_i+1), 1-\alpha/2}}{2D_i}), i = 1, 2$$

where  $Y_i$ 's are the observed numbers of infections and  $D_i$ 's are the total follow-up times for each of the study drug groups, respectively, and  $\chi^2_{\nu,\alpha}$  is the chi-square quantile for lower tail probability  $\alpha$  on  $\nu$  degrees of freedom. In the case where  $Y_i = 0$ , the lower bound  $l_i$  will be set to 0.

Then, the hybrid  $(1 - \alpha) \times 100\%$  CI for the incidence rate difference  $\lambda_1 - \lambda_2$  is given by Equations (4) and (5) in Li et al 2011<sup>15</sup> as follows:

$$L = \hat{\lambda}_{1} - \hat{\lambda}_{2} - \sqrt{(\hat{\lambda}_{1} - l_{1})^{2} + (u_{2} - \hat{\lambda}_{2})^{2}},$$
  
$$U = \hat{\lambda}_{1} - \hat{\lambda}_{2} + \sqrt{(u_{1} - \hat{\lambda}_{1})^{2} + (\hat{\lambda}_{2} - l_{2})^{2}}.$$

It will be concluded that lenacapavir is comparable to F/TDF if U, the upper bound of the CI of the incidence rate difference (LEN – F/TDF), is less than 0.8 per 100 PY.

After we get the CI, we can use the duality of hypothesis testing and  $CI^{16}$  to get the corresponding p-value. For any specified  $\alpha$ , we can compute the upper bound of the  $(1 - \alpha) \times 100\%$  CI, U. Therefore, we can view U as a decreasing function of  $\alpha$ , ie, view it as  $U(\alpha)$ . Solve the equation  $U(\alpha) = 0.8/100$  PY for  $\alpha$ , then  $\alpha/2$  will be the 1-sided p-value.

#### **Analysis Methods for Ratio of HIV-1 Incidence Rates**

Ratio of HIV-1 incidence rates will evaluate the relative statistical difference between lenacapavir and F/TDF. The rate ratios of HIV-1 incidence between lenacapavir and F/TDF will be calculated, and the associated CI will be estimated using a generalized model associated with a Poisson distribution and logarithmic link with the study drug group being the main effect.

If the number of infections is zero in any of the experimental groups (LEN or F/TDF), the Poisson model would fail. Therefore, an exact conditional Poisson regression model will be used as the prespecified alternate to the generalized Poisson model specified above. As specified earlier,  $H_{04}$  will be tested sequentially after  $H_{03}$  has been rejected.

A supportive analysis for the rate ratios may also be performed using time-to-event analysis methods including Kaplan-Meier estimates and/or the proportional hazards model.

#### **Interim Analysis**

#### Timing

A formal interim efficacy analysis will be performed when 50% of participants have completed Week 52 or have prematurely discontinued from the study (50th percentile randomized participant has reached Week 52 or prematurely discontinued from the study).

If the interim analysis of efficacy data leads to stopping the RBP of the study, either for efficacy or futility, then it will serve as the primary analysis. Otherwise, the unblinded primary analysis will be conducted when all participants have a minimum of 52 weeks (1 year) of follow-up in the RBP of the study or permanent discontinuation of study (whichever occurs first) after randomization.

#### Efficacy Boundary

At the interim analysis, an alpha of 0.0026 (1-sided) will be spent, based on the Bonferroni's method, and the remaining alpha at the primary analysis will be 0.025-0.0026=0.0224.

At the interim analysis, given the FDA interim stopping criteria, the RBP of the trial will stop early if superiority of lenacapavir over bHIV, designated H02 with the point estimate of  $LEN/bHIV \le 0.5$ , and over F/TDF, designated H04, both at  $\alpha_1 = 0.0026$  are demonstrated. The interim analysis will serve as the primary analysis if the trial meets the stated criteria and stops early.

#### Futility Boundary

The study will be stopped if F/TDF is found to be superior to lenacapavir at  $\alpha_1 = 0.0026$ .

#### **RITA** Malperformance

The use of the recency assay and RITA to estimate the bHIV in PrEP studies is a novel approach. The estimate of the bHIV is subject to assay and operational issues. Specifically for the interim analysis, if the point estimate of the RITA based counterfactual bHIV is less than 1.5/100 PY, the estimate of bHIV by the recency assay-based methodology will be deemed as not performing as expected. Gilead expects the bHIV (point estimate) in screened participants in both studies to be at least 3.5/100 PY or higher due to the selection of sites in geographies with high bHIV in eligible people who would benefit from PrEP (PWBP). There exists the possibility of unforeseen factors with operationalizing the RITA methodology in the clinical trial context which may result in RITA estimates that are much lower than expected based on the available estimates of the bHIV in these locations, which we refer to here as RITA malperformance. In the case of RITA malperformance, hypotheses  $H_{01}$  and  $H_{02}$  will be skipped (no gating or alpha adjustment) at the interim efficacy analysis for testing hypotheses  $H_{03}$  and  $H_{04}$ . If both hypotheses for testing comparability and superiority to F/TDF are rejected at  $\alpha_1 = 0.0026$ , the RBP of the study will be stopped, and the study will move to the lenacapavir open-label extension phase in order to provide participants randomized to F/TDF the option for the superior HIV prevention option. Otherwise, the RBP will continue to the primary analysis. This provision serves an important ethical purpose in the study, ensuring that a study arm with inferior efficacy is not continued longer than necessary due to malperformance of the RITA.

Supplementary Results

### **Figures**





\*One-sided Logrank test.

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate, LEN, lenacapavir and SC, subcutaneous. Number of participants at risk calculated at beginning of visit. Participants without an HIV diagnosis were censored at the last at-risk of HIV date defined as date of last post-baseline HIV laboratory test (either rapid, central or other local laboratory tests, including follow up visits).

#### Figure S4. Injection-Site Reactions (Nodules, Pain, and Erythema)



At each clinical study visit any clinical events, including injection site reactions (ISRs), were elicited. ISRs were then objectively examined (and measured if applicable) by study staff, graded according to the Division of AIDS (DAIDS) Table for Grading the Severity Adverse Events for site reactions to injections and infusions, and documented as adverse events in the eCRF. Adverse events coded according to Medical Dictionary for Regulatory Activities, Version 27.0. Subcutaneous nodules, injection-site pain, and erythema were the most commonly reported injection-site reactions; over the period of study, they occurred in 63.4%, 56.4 %, and 17.3% of participants in the lenacapavir group, respectively, versus 39.2%, 53.4%, and 19.4% of participants given placebo injections; Grade 1 and 2 injection-site reactions are shown, Grade 3 injection-site reactions in the lenacapavir group: n=4 (0.2%) pain, n=3 (0.1%) erythema; F/TDF group: n=1 pain (<0.1%). There were no Grade 3 adverse events of injection-site nodule in either group. Grade 3 injection-site ulcers occurred in n=7 (0.3%) participants in the lenacapavir group and zero participants in the F/TDF group. Pain mitigation measures including ice or cold compress administration before and after the injection were implemented during the trial. Inappropriate injection technique, especially injection into the dermis rather than the subcutaneous space, was associated with more severe injection-site reactions, such as ulcer formation. Lenacapavir n: baseline, 2183; Week 26, 1859; Week 52, 744. Placebo n: baseline, 1088; Week 26, 946; Week 52, 379. F/TDF denotes emtricitabine-tenofovir disoproxil fumarate and ISR injection-site reaction.

# Tables

|      |             |     | Rapid 4 <sup>th</sup> |                             |                    | Viral load   |
|------|-------------|-----|-----------------------|-----------------------------|--------------------|--------------|
| Case | Group       | Day | gen                   | Central 4 <sup>th</sup> gen | Ab differentiation | (copies/ml)  |
| 1    | Lenacapavir | 1   | Negative              | Positive                    | Negative           | 67,300,000   |
|      |             | 20  |                       | Positive                    | Positive           | 4340         |
|      |             | 111 |                       |                             |                    | 65,400       |
|      |             | 184 |                       |                             |                    | <20          |
|      |             | 258 |                       |                             |                    | Not detected |
| 2    | F/TDF       | 1   | Negative              | Positive                    | Negative           | 90,600,000   |
|      |             | 20  |                       |                             |                    | 104,000      |
|      |             | 70  |                       |                             |                    | 93,000       |
|      |             | 117 |                       |                             |                    | 106,000      |
|      |             | 209 |                       |                             |                    | <20          |
| 3    | F/TDF       | 1   | Negative              | Negative                    |                    | 207          |
|      |             | 8   | -                     | Negative                    |                    | 1710         |
|      |             | 23  |                       | Positive                    | Negative           | 528          |
|      |             | 28  | Negative              |                             | C                  |              |
|      |             | 56  | C                     |                             |                    | Not detected |
| 4    | Lenacapavir | 1   | Negative              | Negative                    |                    | 31           |
|      |             | 13  | Negative              | C                           |                    |              |
|      |             | 21  | Negative              | Negative                    |                    | 189,000      |
|      |             | 29  | Negative              | Negative                    |                    | 944,000      |
|      |             | 77  | C                     | C                           |                    | 78,600       |
|      |             | 119 |                       |                             |                    | 166          |

 Table S5. HIV Test Results for Participants Adjudicated to Have HIV at Baseline

| 5 | Lenacapavir | 1   | Negative | Positive | Negative | 77,900,000   |
|---|-------------|-----|----------|----------|----------|--------------|
|   |             | 21  |          |          |          | 618          |
|   |             | 27  |          |          |          | 36           |
|   |             | 62  |          |          |          | 27           |
|   |             | 126 |          |          |          |              |
| 6 | Lenacapavir | 1   | Negative | Negative |          | 452          |
|   |             | 16  |          | Negative |          | <20          |
|   |             | 32  |          |          |          | Not detected |
|   |             | 71  |          |          |          | Not detected |
|   |             | 122 |          |          |          | Not detected |

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate, gen generation, and HIV human immunodeficiency virus.

|                           |                                 | All-Scr<br>(N= | eened Set<br>4634)                    | Diagnosis of<br>Incidence<br>(N= | f No HIV-1 at<br>e Screening<br>4256) |
|---------------------------|---------------------------------|----------------|---------------------------------------|----------------------------------|---------------------------------------|
|                           |                                 | Diagnosis      | of HIV-1 at                           | Dand                             | amizad                                |
|                           | All-Screened<br>Set<br>(N=4634) | Yes<br>(N=378) | No<br>(N=4256)                        | Yes<br>(N=3292)                  | <u>omized</u><br>No<br>(N=964)        |
| Age                       |                                 |                | · · · · · · · · · · · · · · · · · · · |                                  | , , , , , , , , , , , , , , , , ,     |
| Median (range) — yr       | 29 (17-80)                      | 28 (18-80)     | 29 (17–74)                            | 29 (17–74)                       | 29 (17–72)                            |
| 16 to ≤25 yr — no. (%)    | 1564 (33.8)                     | 131 (34.7)     | 1433 (33.7)                           | 1101 (33.4)                      | 332 (34.4)                            |
| Sex assigned at birth     |                                 |                |                                       |                                  |                                       |
| Male                      | 4552 (98.2)                     | 376 (99.5)     | 4176 (98.1)                           | 3223 (97.9)                      | 953 (98.9)                            |
| Female                    | 82 (1.8)                        | 2 (0.5)        | 80 (1.9)                              | 69 (2.1)                         | 11 (1.1)                              |
| Gender identity — no. (%) |                                 |                |                                       |                                  |                                       |
| Cisgender man             | 3585 (77.4)                     | 283 (74.9)     | 3302 (77.6)                           | 2557 (77.7)                      | 745 (77.3)                            |
| Transgender woman         | 731 (15.8)                      | 77 (20.4)      | 654 (15.4)                            | 479 (14.6)                       | 175 (18.2)                            |
| Transgender man           | 53 (1.1)                        | 0              | 53 (1.2)                              | 45 (1.4)                         | 8 (0.8)                               |
| Gender nonbinary          | 252 (5.4)                       | 17 (4.5)       | 235 (5.5)                             | 200 (6.1)                        | 35 (3.6)                              |
| Assigned male at birth    | 223 (4.8)                       | 15 (4.0)       | 208 (4.9)                             | 176 (5.3)                        | 32 (3.3)                              |
| Assigned female at birth  | 29 (0.6)                        | 2 (0.5)        | 27 (0.6)                              | 24 (0.7)                         | 3 (0.3)                               |
| Other                     | 13 (0.3)                        | 1 (0.3)        | 12 (0.3)                              | 11 (0.3)                         | 1 (0.1)                               |
| Travesti                  | 7 (0.2)                         | 0              | 7 (0.2)                               | 6 (0.2)                          | 1 (0.1)                               |
| Assigned male at birth    | 7 (0.2)                         | 0              | 7 (0.2)                               | 6 (0.2)                          | 1 (0.1)                               |

# Table S6. Screening and Baseline Demographics and Clinical Characteristics

| Assigned female at birth                       | 0           | 0          | 0           | 0           | 0          |
|------------------------------------------------|-------------|------------|-------------|-------------|------------|
| Any other                                      | 6 (0.1)     | 1 (0.3)    | 5 (0.1)     | 5 (0.2)     | 0          |
| Assigned male at birth                         | 6 (0.1)     | 1 (0.3)    | 5 (0.1)     | 5 (0.2)     | 0          |
| Assigned female at birth                       | 0           | 0          | 0           | 0           | 0          |
| Sexual orientation — no. $(\%)^*$              |             |            |             |             |            |
| Straight/heterosexual                          | 366 (8.0)   | 37 (9.9)   | 329 (7.8)   | 216 (6.6)   | 113 (11.9) |
| Gay                                            | 3388 (73.7) | 298 (79.5) | 3090 (73.2) | 2451 (75.0) | 639 (67.1) |
| Lesbian                                        | 3 (<0.1)    | 0          | 3 (<0.1)    | 2 (<0.1)    | 1 (0.1)    |
| Bisexual                                       | 690 (15.0)  | 34 (9.1)   | 656 (15.5)  | 494 (15.1)  | 162 (17.0) |
| Other                                          | 149 (3.2)   | 6 (1.6)    | 143 (3.4)   | 105 (3.2)   | 38 (4.0)   |
| Pansexual                                      | 93 (2.0)    | 4 (1.1)    | 89 (2.1)    | 73 (2.2)    | 16 (1.7)   |
| Homosexual                                     | 13 (0.3)    | 1 (0.3)    | 12 (0.3)    | 6 (0.2)     | 6 (0.6)    |
| Queer                                          | 35 (0.8)    | 1 (0.3)    | 34 (0.8)    | 23 (0.7)    | 11 (1.1)   |
| Any other                                      | 8 (0.2)     | 0          | 8 (0.2)     | 3 (<0.1)    | 5 (0.5)    |
| Race overall — no. $(\%)^{\dagger}$            |             |            |             |             |            |
| Asian                                          | 519 (11.2)  | 30 (8.0)   | 489 (11.5)  | 414 (12.6)  | 75 (7.8)   |
| $\operatorname{Black}^{\ddagger}$              | 1965 (42.5) | 261 (69.2) | 1704 (40.2) | 1241 (37.8) | 463 (48.1) |
| Indigenous or Indigenous ancestry <sup>§</sup> | 670 (14.5)  | 37 (9.8)   | 633 (14.9)  | 499 (15.2)  | 134 (13.9) |
| White                                          | 1374 (29.7) | 40 (10.6)  | 1334 (31.4) | 1073 (32.7) | 261 (27.1) |
| Other and other multiracial <sup>P</sup>       | 93 (2.0)    | 9 (2.4)    | 84 (2.0)    | 55 (1.7)    | 29 (3.0)   |
| Ethnicity — no. $(\%)^{\#}$                    |             |            |             |             |            |
| Hispanic or Latine                             | 2822 (60.9) | 169 (44.7) | 2653 (62.4) | 2062 (62.7) | 591 (61.3) |

| Not Hispanic or Latine             | 1811 (39.1)            | 209 (55.3)             | 1602 (37.6)            | 1229 (37.3)            | 373 (38.7)             |
|------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Screening weight                   |                        |                        |                        |                        |                        |
| No.**                              | 3873                   | 28                     | 3845                   | 3291                   | 554                    |
| Median (range) — kg                | 75.1<br>(39.1–210.8)   | 71.2<br>(44.5–97.1)    | 75.1<br>(39.1–210.8)   | 75.2<br>(39.1–210.8)   | 74.4<br>(41.5–163.8)   |
| Screening height                   | · · · · · ·            |                        | × ,                    | · · · · · ·            |                        |
| No.**                              | 3862                   | 18                     | 3844                   | 3291                   | 553                    |
| Median (range) — cm                | 173.0<br>(123.0–200.7) | 174.0<br>(167.0–183.0) | 173.0<br>(123.0–200.7) | 173.0<br>(123.0–200.7) | 172.0<br>(149.0–200.0) |
| Screening body mass index          | ,                      | ( )                    |                        | ,                      | ,                      |
| No.**                              | 3862                   | 18                     | 3844                   | 3291                   | 553                    |
| Median (range) — kg/m <sup>2</sup> | 25.1<br>(14.4–89.3)    | 22.9<br>(14.8–32.1)    | 25.1<br>(14.4–89.3)    | 25.1<br>(14.4–89.3)    | 25.3<br>(15.2–60.2)    |
| Screening waist circumference      |                        | × ,                    | × /                    |                        |                        |
| No.**                              | 3863                   | 27                     | 3836                   | 3288                   | 548                    |
| Median (range) — cm                | 86.0<br>(52.6–175.3)   | 81.0<br>(61.0–101.0)   | 86.0<br>(52.6–175.3)   | 86.3<br>(55.0–175.3)   | 85.1<br>(52.6–146.0)   |
| Highest education level            |                        |                        |                        |                        |                        |
| Did not attend primary school      | 4 (<0.1)               | 0                      | 4 (<0.1)               | 2 (<0.1)               | 2 (0.2)                |
| Some primary school education      | 43 (1.0)               | 7 (2.5)                | 36 (0.9)               | 22 (0.7)               | 14 (1.6)               |
| Primary school complete            | 162 (3.7)              | 8 (2.8)                | 154 (3.7)              | 116 (3.5)              | 38 (4.4)               |
| Some secondary school education    | 531 (12.0)             | 60 (21.2)              | 471 (11.4)             | 376 (11.4)             | 95 (11.1)              |
| Secondary school degree complete   | 1517 (34.3)            | 116 (41.0)             | 1401 (33.8)            | 1081 (32.9)            | 320 (37.5)             |
| Some college or university degree  | 2168 (49.0)            | 92 (32.5)              | 2076 (50.1)            | 1691 (51.4)            | 385 (45.1)             |
| Missing <sup>**</sup>              | 209                    | 95                     | 114                    | 4                      | 110                    |

| Needs help with completion of electronic questionnaire                          | <i>4</i> 35 (11 2) | 3 (13 0)   | 432 (11.2)  | 363 (11.0)  | 69 (12 4)  |
|---------------------------------------------------------------------------------|--------------------|------------|-------------|-------------|------------|
| 1 05                                                                            | 433 (11.2)         | 5 (15.0)   | 432 (11.2)  | 505 (11.0)  | 09 (12.4)  |
| No                                                                              | 3434 (88.8)        | 20 (87.0)  | 3414 (88.8) | 2925 (89.0) | 489 (87.6) |
| Missing**                                                                       | 765                | 355        | 410         | 4           | 406        |
| History of syphilis, rectal gonorrhea, or rectal chlamydia in the past 24 weeks |                    |            |             |             |            |
| Yes                                                                             | 570 (12.3)         | 41 (10.8)  | 529 (12.4)  | 404 (12.3)  | 125 (13.0) |
| No                                                                              | 4064 (87.7)        | 337 (89.2) | 3727 (87.6) | 2888 (87.7) | 839 (87.0) |
| Condomless receptive anal sex with $\geq 2$ partners in the last 12 weeks       |                    |            |             |             |            |
| Yes                                                                             | 4450 (96.0)        | 371 (98.1) | 4079 (95.8) | 3195 (97.1) | 884 (91.7) |
| No                                                                              | 184 (4.0)          | 7 (1.9)    | 177 (4.2)   | 97 (2.9)    | 80 (8.3)   |
| Self-reported use of stimulants with sex in the last 12 weeks                   |                    |            |             |             |            |
| Yes                                                                             | 1111 (24.0)        | 74 (19.6)  | 1037 (24.4) | 768 (23.3)  | 269 (27.9) |
| No                                                                              | 3523 (76.0)        | 304 (80.4) | 3219 (75.6) | 2524 (76.7) | 695 (72.1) |

BMI denotes body mass index.

Unavailable or missing data were excluded from the calculation of percentage.

\* Thirty-eight participants chose not to disclose their sexual orientation in the all-screened cohort.

<sup>†</sup> Race data were unavailable for 13 participants in the all-screened cohort.

\* Black included all participants who identified as Black or of Black ancestry: Black, Black/White, Black/Pardo, Black/Brown, Black/Colored, Black/American Indian or Alaskan Native, Black/Asian, and Black/Native Hawaiian or Pacific Islander.

<sup>§</sup> American Indian or Alaskan Native, Native Hawaiian or Pacific Islander, Asian/Native Hawaiian or Pacific Islander, White/Native Hawaiian or Pacific Islander, and White/American Indian or Alaskan Native.

<sup>®</sup> Other included: Asian/White, Colored, Pardo, White/Brown, multiracial any other, and not multiracial other.

<sup>#</sup> Ethnicity data were unavailable for one participant in the all-screened cohort.

\*\* Missing (weight, height, BMI, waist circumference, education level, and help with electronic questionnaire) when data collection was not required at Incidence Screening.

| Time At-Risk of HIV in Study                             |                         |                   |                   |  |  |  |  |  |
|----------------------------------------------------------|-------------------------|-------------------|-------------------|--|--|--|--|--|
|                                                          | Lenacapavir<br>(N=2179) | F/TDF<br>(N=1086) | Total<br>(N=3265) |  |  |  |  |  |
| Duration of time at-risk of HIV, weeks                   |                         |                   |                   |  |  |  |  |  |
| No.                                                      | 2149                    | 1071              | 3220              |  |  |  |  |  |
| Mean (SD)                                                | 47.1 (23.9)             | 47.1 (25.2)       | 47.1 (24.3)       |  |  |  |  |  |
| Median                                                   | 39.4                    | 39.3              | 39.4              |  |  |  |  |  |
| Q1, Q3                                                   | 30.7, 56.0              | 27.9, 55.6        | 30.2, 55.6        |  |  |  |  |  |
| Min, max                                                 | 3.1, 157.4              | 3.9, 157.3        | 3.1, 157.4        |  |  |  |  |  |
| Cumulative duration of time at-risk of HIV, person-years | 1938.1                  | 966.5             | 2904.6            |  |  |  |  |  |

# Table S7. Time at Risk of HIV in the Study and Retention Based on Attending Study Visit and Receiving HIV Testing

#### **Retention by Visit**

|          | Lenacapavir |              | F/TDF    |                 | Total    |              |
|----------|-------------|--------------|----------|-----------------|----------|--------------|
|          | Expected    | Actual       | Expected | Actual          | Expected | Actual       |
|          | — no.       | — no. (%)    | — no.    | — no. (%)       | — no.    | — no. (%)    |
| Baseline | 2183        | 2183 (100.0) | 1088     | 1088<br>(100.0) | 3271     | 3271 (100.0) |
| Week 4   | 2153        | 2110 (98.0)  | 1070     | 1046 (97.8)     | 3223     | 3156 (97.9)  |
| Week 8   | 2129        | 2068 (97.1)  | 1055     | 1027 (97.3)     | 3184     | 3095 (97.2)  |
| Week 13  | 2098        | 2060 (98.2)  | 1038     | 1017 (98.0)     | 3136     | 3077 (98.1)  |
| Week 26  | 2010        | 1882 (93.6)  | 991      | 952 (96.1)      | 3001     | 2834 (94.4)  |
| Week 39  | 1563        | 1472 (94.2)  | 789      | 749 (94.9)      | 2352     | 2221 (94.4)  |
| Week 52  | 856         | 793 (92.6)   | 421      | 398 (94.5)      | 1277     | 1191 (93.3)  |
| Week 65  | 476         | 434 (91.2)   | 251      | 230 (91.6)      | 727      | 664 (91.3)   |
| Week 78  | 261         | 232 (88.9)   | 135      | 123 (91.1)      | 396      | 355 (89.6)   |
| Week 91  | 119         | 105 (88.2)   | 75       | 72 (96.0)       | 194      | 177 (91.2)   |
| Week 104 | 39          | 35 (89.7)    | 30       | 28 (93.3)       | 69       | 63 (91.3)    |
| Week 117 | 28          | 26 (92.9)    | 23       | 23 (100.0)      | 51       | 49 (96.1)    |

| Week 130 | 28 | 20 (71.4) | 23 | 19 (82.6) | 51 | 39 (76.5) |
|----------|----|-----------|----|-----------|----|-----------|
| Week 143 | 18 | 0         | 19 | 0         | 37 | 0         |
| Week 156 | 2  | 0         | 4  | 0         | 6  | 0         |

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate, HIV, human immunodeficiency virus, and Q quartile.

Denominator for percentages is the number of participants expected at each visit. Expected at baseline is the number of participants treated. Expected at postbaseline is the number of participants who were treated and had potential to be followed up on or beyond the upper limit of the clinical visit window (based on their first dose date) and did not discontinue the randomized blinded study phase prior to the upper limit of the clinical visit window. In addition, participants who had a RAPID test or HIV laboratory test visit were also counted as expected participants at the visit. Actual is defined as the number of participants who had an actual HIV test visit for the visit (based on visit labels of labs or case report forms). Laboratory data up to final data extraction date were included.

#### Table S8. Adherence

|                               | Lenacapavir | Lenacapavir | F/TDF | F/TDF |
|-------------------------------|-------------|-------------|-------|-------|
| Category                      | — no.       | (%)         | — no. | (%)   |
| Number of participants        |             |             |       |       |
| expected to receive Week 26 / | 1912        |             | 952   |       |
| SC injection 2                |             |             |       |       |
| On-time SC injection ≤14 days | 1729        | 90.4        | 877   | 92.1  |
| <-14 days                     | 2           | 0.1         | 4     | 0.4   |
| -14 to $-8$ days              | 12          | 0.6         | 9     | 0.9   |
| -7 to 7 days                  | 1643        | 85.9        | 826   | 86.8  |
| 8 to 14 days                  | 72          | 3.8         | 38    | 4.0   |
| Late SC                       | 0.1         | 4.2         | 40    | 4.2   |
| injection >14 days            | 81          | 4.2         | 40    | 4.2   |
| Did not receive SC            | 102         | 5.2         | 25    | 27    |
| injection                     | 102         | 5.3         | 33    | 3.7   |
| Number of participants        |             |             |       |       |
| expected to receive Week 52 / | 727         |             | 368   |       |
| SC injection 3                |             |             |       |       |
| On-time SC injection ≤14 days | 678         | 93.3        | 338   | 91.8  |
| <-14 days                     | 4           | 0.6         | 4     | 1.1   |
| -14 to $-8$ days              | 13          | 1.8         | 4     | 1.1   |
| -7 to 7 days                  | 615         | 84.6        | 305   | 82.9  |
| 8 to 14 days                  | 46          | 6.3         | 25    | 6.8   |
| Late SC                       | 20          | 1 1         | 16    | 1 2   |
| injection >14 days            | 32          | 4.4         | 10    | 4.3   |
| Did not receive SC            | 17          | 2.2         | 1.4   | 2.9   |
| injection                     | 1 /         | 2.3         | 14    | 3.0   |

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate, RBP Randomized Blinded Phase, and SC subcutaneous.

Data show adherence to SC lenacapavir or placebo injection visits for participants randomized and treated after the clinical hold lift. Projected SC lenacapavir or placebo injection visit date is the previous injection visit date plus 26 weeks (182 days). Expected to receive an SC injection includes participants with the potential to be followed up on or beyond the upper limit of the clinical injection visit window (previous SC injection date +189 days [26+1 weeks]) and didn't permanently discontinue RBP prior to upper limit of the protocol clinical injection visit window. Participants with an SC injection at a visit also counted as expected at the visit. Injections are considered received if any injection dose is administered, including partial or incomplete injections. Clinical hold period includes December 21, 2021, through May 16, 2022.

### Table S9. Clinical Hold

|                                                                    | Lenacapavir<br>(N=2183) | F/TDF<br>(N=1088) |
|--------------------------------------------------------------------|-------------------------|-------------------|
| RBP potentially impacted by clinical hold — no. (%)                | 59 (2.7)                | 33 (3.0)          |
| Diagnosis of HIV-1 during clinical hold                            | 0                       | 0                 |
| Received oral study drug for clinical hold — no. (%)               | 59 (2.7)                | 33 (3.0)          |
| Resumed RBP study drug                                             | 40 (1.8)                | 25 (2.3)          |
| Did not resume RBP study drug                                      | 19 (0.9)                | 8 (0.7)           |
| Received open-label oral F/TDF                                     | 3 (0.1)                 | 1 (<0.1)          |
| Resumed RBP study drug                                             | 2 (<0.1)                | 0                 |
| Did not resume RBP study drug                                      | 1 (<0.1)                | 1 (<0.1)          |
| Received open-label oral F/TAF                                     | 17 (0.8)                | 15 (1.4)          |
| Resumed RBP study drug                                             | 15 (0.7)                | 11 (1.0)          |
| Did not resume RBP study drug                                      | 2 (<0.1)                | 4 (0.4)           |
| Received open-label oral F/TDF and open-label F/TAF                | 0                       | 1 (<0.1)          |
| Resumed RBP study drug                                             | 0                       | 1 (<0.1)          |
| Did not resume RBP study drug                                      | 0                       | 0                 |
| Received blinded oral weekly lenacapavir/placebo-to-match bridging | 39 (1.8)                | 16 (1.5)          |
| Resumed RBP study drug injections                                  | 23 (1.1)                | 13 (1.2)          |

| Did not resume RBP study drug injections | 16 (0.7) | 3 (0.3) |
|------------------------------------------|----------|---------|
|------------------------------------------|----------|---------|

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate, F/TAF emtricitabine-tenofovir alafenamide, HIV human immunodeficiency virus, and RBP Randomized Blinded Phase. Screening (Incidence or RBP), randomization, or first dose was interrupted by the clinical hold for 18 participants; nine re-screened. There were no HIV-1 diagnoses during re-screening. RBP Potentially Impacted by Clinical Hold includes participants first dosed on or prior to December 21, 2021, who 1) received oral study drug during clinical hold or 2) permanently discontinued RBP study drug with reason of clinical hold.

| Number of STI Events/Person-Years                     | Lenacapavir        | F/TDF            |
|-------------------------------------------------------|--------------------|------------------|
| of Follow-Up (Incidence Rate per<br>100 Person-Years) | (N=2096)           | (N=1036)         |
| Gonorrhea or chlamydia                                | 1504/1931.0 (77.9) | 668/962.1 (69.4) |
| Rectal                                                | 889/1930.9 (46.0)  | 388/962.1 (40.3) |
| Pharyngeal                                            | 426/1930.8 (22.1)  | 216/961.4 (22.5) |
| Urethral (urine)                                      | 189/1929.1 (9.8)   | 64/958.5 (6.7)   |
|                                                       |                    |                  |
| Gonorrhea                                             | 789/1931.0 (40.9)  | 352/962.1 (36.6) |
| Rectal                                                | 382/1930.9 (19.8)  | 165/962.1 (17.1) |
| Pharyngeal                                            | 350/1930.8 (18.1)  | 164/961.4 (17.1) |
| Urethral (urine)                                      | 57/1929.1 (3.0)    | 23/958.5 (2.4)   |
|                                                       |                    |                  |
| Chlamydia                                             | 715/1931.0 (37.0)  | 316/962.1 (32.8) |
| Rectal                                                | 507/1930.9 (26.3)  | 223/962.1 (23.2) |
| Pharyngeal                                            | 76/1930.8 (3.9)    | 52/961.4 (5.4)   |
| Urethral (urine)                                      | 132/1929.1 (6.8)   | 41/958.5 (4.3)   |

Table S10. The Incidence of Laboratory-Diagnosed N. gonorrhoeae, C. trachomatis

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate and STI sexually transmitted infection.

Full analysis set among participants with any STI laboratory test while at-risk of HIV in study. Based on central and local laboratory test results. Laboratory tests administered at Week 13 and every 13 weeks. STIs while at risk of HIV are defined as any positive results with a laboratory test date after first dose date through 1) diagnosis date for participants with HIV-1 or 2) latest postbaseline HIV laboratory test date (including follow-up visit, local or central laboratory) for participants without HIV-1. Within each STI and anatomic location, participants with >1 positive test result within 14 days of another positive test result were only counted once.

| Number of Syphilis Events             | Lenacapavir | F/TDF      |
|---------------------------------------|-------------|------------|
| (Incidence Rate per 100 Person-Years) | (N=2094)    | (N=1035)   |
| Person-years of follow-up             | 1931.2      | 961.1      |
|                                       |             |            |
| Syphilis diagnosis                    |             |            |
| Yes                                   | 273 (14.1)  | 119 (12.4) |
|                                       |             |            |
| Disease stage                         |             |            |
| Primary                               | 8 (0.4)     | 3 (0.3)    |
| Early latent                          | 175 (9.1)   | 74 (7.7)   |
| Secondary                             | 26 (1.3)    | 16 (1.7)   |
| Tertiary                              | 0           | 0          |
| Late latent                           | 43 (2.2)    | 11 (1.1)   |
| Other                                 | 20 (1.0)    | 15 (1.6)   |
| Missing                               | 1           | 0          |
|                                       |             |            |
| Status                                |             |            |
| New                                   | 203 (10.5)  | 80 (8.3)   |
| Re-infection                          | 69 (3.6)    | 39 (4.1)   |
| Missing                               | 1           | 0          |

Table S11. The Incidence of Syphilis

F/TDF denotes emtricitabine–tenofovir disoproxil fumarate, HIV human immunodeficiency virus, and STI sexually transmitted infection. Syphilis testing by blood tests was performed locally based on local testing protocols; syphilis diagnosis, disease stage, and disease status are based on the investigator's clinical diagnosis based on the assessment of both clinical signs and symptoms and local laboratory data. Full analysis set among participants with any syphilis evaluation while at-risk of HIV in study. Missing disease stage or status when not collected in investigator documentation. Results have not been adjudicated. Number of reported events = number of unique participants and diagnosis dates (after first dose date) for each disease stage and status. Person-years are sum of all participants' total number of years (1 year = 365.25 days) of follow-up while at-risk of HIV in study between first dose date and either 1) HIV-1 diagnosis date for participants with HIV-1 or 2) latest postbaseline HIV laboratory test date (including follow-up visit, local or central laboratory) for participants without HIV-1. Missing is excluded from incidence-rate calculations.

| Participant                                          |                 |                 | Α                        |                                    |                 |                 | В               |                 |                                    |
|------------------------------------------------------|-----------------|-----------------|--------------------------|------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------------|
| Week                                                 | 0               | 4               | 8                        | 13                                 | 0               | 4               | 8               | 13              | 26                                 |
| Rapid Ag/Ab                                          | (-)             | (-)             | (-)                      | (+)                                | (-)             | (-)             | (-)             | (-)             | (-)                                |
| Central Ag/Ab                                        | (-)             | (-)             | (-)                      | (+)                                | (-)             | (-)             | (-)             | (-)             | (+)                                |
| HIV-1/2 Ab diff                                      |                 |                 |                          | (HIV-1 +/<br>HIV-2 –) <sup>*</sup> |                 |                 |                 |                 | (HIV-1 +/<br>HIV-2 –) <sup>*</sup> |
| Qualitative HIV-1 RNA                                |                 |                 |                          | (+)                                |                 |                 |                 |                 | (+)                                |
| Quantitative HIV-1 RNA<br>VL, copies/ml <sup>†</sup> | ND              | ND <sup>‡</sup> | ND <sup>‡</sup>          | 934,000                            | ND              |                 |                 | ND <sup>‡</sup> | 14,100                             |
| SCA, copies/ml                                       | $ND^{\ddagger}$ | $ND^{\ddagger}$ | <b>4</b> .8 <sup>‡</sup> |                                    | $ND^{\ddagger}$ | $ND^{\ddagger}$ | $ND^{\ddagger}$ | $ND^{\ddagger}$ |                                    |

Table S12. HIV Test Results in Participants Receiving Lenacapavir Who Were Diagnosed with HIV-1

\* Antibody differentiation intermediate for HIV-1, negative for HIV-2. HIV-1 confirmed by Qualitative RNA and Quantitative RNA

<sup>†</sup> Lower limit of quantitation, 20 copies per mL

 $\ddagger$  Denotes tests run from archived samples after HIV diagnosis

(-) denotes negative results, (+) denotes positive results, Central Ag/Ab denotes central laboratory fourth-generation antigen/antibody test, HIV denotes human immunodeficiency virus, HIV-1/2 Ab diff denotes HIV-1/2 antibody differentiation assay, ND denotes no HIV-1 RNA detected, Qualitative HIV-1 RNA denotes qualitative HIV-1 RNA test, Rapid Ag/Ab denotes local rapid HIV-1/2 antigen/antibody test, SCA denotes HIV-1 RNA single-copy assay and VL denotes HIV-1 RNA quantitative viral load; blank denotes test not done.

|                                                    | Lenacapavir<br>(N=2183) | F/TDF<br>(N=1088) |
|----------------------------------------------------|-------------------------|-------------------|
| Participants with any grade 3 or higher treatment- |                         |                   |
| emergent adverse events (excluding injection-site  | 91 (4.2)                | 65 (6.0)          |
| reactions) — no. (%)                               |                         |                   |
| Participants with any grade 3 or higher treatment- |                         |                   |
| emergent adverse events (including injection-site  | 104 (4.8)               | 66 (6.1)          |
| reactions) — no. (%)                               |                         |                   |
| Grade 3 (Severe)                                   | 82 (3.8)                | 59 (5.4)          |
| Grade 4 (Life-Threatening)                         | 18 (0.8)                | 6 (0.6)           |
| Grade 5 (Death)                                    | 4 (0.2)                 | 1 (<0.1)          |
| Blood and lymphatic system disorders               | 2 (<0.1)                | 3 (0.3)           |
| Grade 3 (Severe)                                   | 2 (<0.1)                | 3 (0.3)           |
| Lymphopenia                                        | 1 (<0.1)                | 2 (0.2)           |
| Grade 3 (Severe)                                   | 1 (<0.1)                | 2 (0.2)           |
| Anemia                                             | 0                       | 1 (<0.1)          |
| Grade 3 (Severe)                                   | 0                       | 1 (<0.1)          |
| Sickle cell anemia with crisis                     | 1 (<0.1)                | 0                 |
| Grade 3 (Severe)                                   | 1 (<0.1)                | 0                 |
| Cardiac disorders                                  | 3 (0.1)                 | 0                 |
| Grade 3 (Severe)                                   | 1 (<0.1)                | 0                 |
| Grade 4 (Life-Threatening)                         | 2 (<0.1)                | 0                 |
| Atrial fibrillation                                | 2 (<0.1)                | 0                 |
| Grade 3 (Severe)                                   | 1 (<0.1)                | 0                 |
| Grade 4 (Life-Threatening)                         | 1 (<0.1)                | 0                 |
| Acute myocardial infarction                        | 1 (<0.1)                | 0                 |
| Grade 4 (Life-Threatening)                         | 1 (<0.1)                | 0                 |
| Ear and labyrinth disorders                        | 0                       | 1 (<0.1)          |
| Grade 3 (Severe)                                   | 0                       | 1 (<0.1)          |

# Table S13. Grade 3 or Higher Adverse Events

| Vertigo                       | 0        | 1 (<0.1) |
|-------------------------------|----------|----------|
| Grade 3 (Severe)              | 0        | 1 (<0.1) |
| Endocrine disorders           | 1 (<0.1) | 0        |
| Grade 3 (Severe)              | 1 (<0.1) | 0        |
| Thyrotoxic periodic paralysis | 1 (<0.1) | 0        |
| Grade 3 (Severe)              | 1 (<0.1) | 0        |
| Gastrointestinal disorders    | 6 (0.3)  | 7 (0.6)  |
| Grade 3 (Severe)              | 4 (0.2)  | 7 (0.6)  |
| Grade 4 (Life-Threatening)    | 2 (<0.1) | 0        |
| Diarrhea                      | 0        | 4 (0.4)  |
| Grade 3 (Severe)              | 0        | 4 (0.4)  |
| Nausea                        | 0        | 3 (0.3)  |
| Grade 3 (Severe)              | 0        | 3 (0.3)  |
| Abdominal pain lower          | 1 (<0.1) | 0        |
| Grade 3 (Severe)              | 1 (<0.1) | 0        |
| Colitis                       | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)    | 1 (<0.1) | 0        |
| Colitis ulcerative            | 1 (<0.1) | 0        |
| Grade 3 (Severe)              | 1 (<0.1) | 0        |
| Dyspepsia                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)              | 1 (<0.1) | 0        |
| Hemorrhoids                   | 0        | 1 (<0.1) |
| Grade 3 (Severe)              | 0        | 1 (<0.1) |
| Strangulated umbilical hernia | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)    | 1 (<0.1) | 0        |
| Toothache                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)              | 1 (<0.1) | 0        |
| Vomiting                      | 0        | 1 (<0.1) |
| Grade 3 (Severe)              | 0        | 1 (<0.1) |

| General disorders and administration-site conditions | 15 (0.7) | 5 (0.5)  |
|------------------------------------------------------|----------|----------|
| Grade 3 (Severe)                                     | 14 (0.6) | 3 (0.3)  |
| Grade 4 (Life-Threatening)                           | 0        | 1 (<0.1) |
| Grade 5 (Death)                                      | 1 (<0.1) | 1 (<0.1) |
| Injection-site ulcer                                 | 7 (0.3)  | 0        |
| Grade 3 (Severe)                                     | 7 (0.3)  | 0        |
| Injection-site pain                                  | 4 (0.2)  | 1 (<0.1) |
| Grade 3 (Severe)                                     | 4 (0.2)  | 1 (<0.1) |
| Injection-site erythema                              | 3 (0.1)  | 0        |
| Grade 3 (Severe)                                     | 3 (0.1)  | 0        |
| Chills                                               | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                     | 0        | 1 (<0.1) |
| Death                                                | 1 (<0.1) | 1 (<0.1) |
| Grade 5 (Death)                                      | 1 (<0.1) | 1 (<0.1) |
| Ill-defined disorder                                 | 0        | 1 (<0.1) |
| Grade 4 (Life-Threatening)                           | 0        | 1 (<0.1) |
| Injection-site dermatitis                            | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                     | 1 (<0.1) | 0        |
| Injection-site edema                                 | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                     | 1 (<0.1) | 0        |
| Lithiasis                                            | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                     | 0        | 1 (<0.1) |
| Pyrexia                                              | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                     | 0        | 1 (<0.1) |
| Hepatobiliary disorders                              | 4 (0.2)  | 1 (<0.1) |
| Grade 3 (Severe)                                     | 2 (<0.1) | 1 (<0.1) |
| Grade 4 (Life-Threatening)                           | 2 (<0.1) | 0        |
| Cholecystitis acute                                  | 1 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                                     | 1 (<0.1) | 1 (<0.1) |

| Hypertransaminasemia        | 2 (<0.1) | 0        |
|-----------------------------|----------|----------|
| Grade 3 (Severe)            | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)  | 1 (<0.1) | 0        |
| Hepatitis acute             | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)  | 1 (<0.1) | 0        |
| Immune system disorders     | 1 (<0.1) | 0        |
| Grade 3 (Severe)            | 1 (<0.1) | 0        |
| Drug hypersensitivity       | 1 (<0.1) | 0        |
| Grade 3 (Severe)            | 1 (<0.1) | 0        |
| Infections and infestations | 34 (1.6) | 18 (1.7) |
| Grade 3 (Severe)            | 31 (1.4) | 18 (1.7) |
| Grade 4 (Life-Threatening)  | 3 (0.1)  | 0        |
| Appendicitis                | 7 (0.3)  | 6 (0.6)  |
| Grade 3 (Severe)            | 7 (0.3)  | 6 (0.6)  |
| Gastroenteritis             | 3 (0.1)  | 2 (0.2)  |
| Grade 3 (Severe)            | 3 (0.1)  | 2 (0.2)  |
| Hepatitis A                 | 3 (0.1)  | 1 (<0.1) |
| Grade 3 (Severe)            | 3 (0.1)  | 1 (<0.1) |
| Abscess limb                | 3 (0.1)  | 0        |
| Grade 3 (Severe)            | 3 (0.1)  | 0        |
| Cellulitis                  | 2 (<0.1) | 0        |
| Grade 3 (Severe)            | 2 (<0.1) | 0        |
| Dengue fever                | 2 (<0.1) | 0        |
| Grade 3 (Severe)            | 2 (<0.1) | 0        |
| Dengue hemorrhagic fever    | 2 (<0.1) | 0        |
| Grade 3 (Severe)            | 2 (<0.1) | 0        |
| Osteomyelitis               | 1 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)            | 1 (<0.1) | 1 (<0.1) |

| Pneumonia                                 | 2 (<0.1) | 0        |
|-------------------------------------------|----------|----------|
| Grade 3 (Severe)                          | 2 (<0.1) | 0        |
| Pyelonephritis                            | 0        | 2 (0.2)  |
| Grade 3 (Severe)                          | 0        | 2 (0.2)  |
| Abdominal infection                       | 0        | 1 (<0.1) |
| Grade 3 (Severe)                          | 0        | 1 (<0.1) |
| Acute HIV infection                       | 0        | 1 (<0.1) |
| Grade 3 (Severe)                          | 0        | 1 (<0.1) |
| Anal abscess                              | 0        | 1 (<0.1) |
| Grade 3 (Severe)                          | 0        | 1 (<0.1) |
| Anorectal human papilloma virus infection | 0        | 1 (<0.1) |
| Grade 3 (Severe)                          | 0        | 1 (<0.1) |
| Bacterial infection                       | 1 (<0.1) | 0        |
| Grade 3 (Severe)                          | 1 (<0.1) | 0        |
| Complicated appendicitis                  | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)                | 1 (<0.1) | 0        |
| Encephalitis viral                        | 1 (<0.1) | 0        |
| Grade 3 (Severe)                          | 1 (<0.1) | 0        |
| Enteritis infectious                      | 1 (<0.1) | 0        |
| Grade 3 (Severe)                          | 1 (<0.1) | 0        |
| Erysipelas                                | 0        | 1 (<0.1) |
| Grade 3 (Severe)                          | 0        | 1 (<0.1) |
| Large intestine infection                 | 0        | 1 (<0.1) |
| Grade 3 (Severe)                          | 0        | 1 (<0.1) |
| Meningoencephalitis viral                 | 1 (<0.1) | 0        |
| Grade 3 (Severe)                          | 1 (<0.1) | 0        |
| Peritonsillar abscess                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)                          | 1 (<0.1) | 0        |

| Pneumonia bacterial                             | 1 (<0.1) | 0        |
|-------------------------------------------------|----------|----------|
| Grade 4 (Life-Threatening)                      | 1 (<0.1) | 0        |
| Pyelonephritis acute                            | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Sepsis                                          | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)                      | 1 (<0.1) | 0        |
| Tonsillitis bacterial                           | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Injury, poisoning, and procedural complications | 10 (0.5) | 7 (0.6)  |
| Grade 3 (Severe)                                | 8 (0.4)  | 7 (0.6)  |
| Grade 4 (Life-Threatening)                      | 1 (<0.1) | 0        |
| Grade 5 (Death)                                 | 1 (<0.1) | 0        |
| Road traffic accident                           | 2 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                                | 1 (<0.1) | 1 (<0.1) |
| Grade 5 (Death)                                 | 1 (<0.1) | 0        |
| Abdominal injury                                | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Alcohol poisoning                               | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Ankle fracture                                  | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Chest injury                                    | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Craniocerebral injury                           | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Craniofacial fracture                           | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Fall                                            | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |

| Femur fracture                       | 1 (<0.1) | 0        |
|--------------------------------------|----------|----------|
| Grade 3 (Severe)                     | 1 (<0.1) | 0        |
| Foot fracture                        | 0        | 1 (<0.1) |
| Grade 3 (Severe)                     | 0        | 1 (<0.1) |
| Foreign body aspiration              | 0        | 1 (<0.1) |
| Grade 3 (Severe)                     | 0        | 1 (<0.1) |
| Joint injury                         | 0        | 1 (<0.1) |
| Grade 3 (Severe)                     | 0        | 1 (<0.1) |
| Muscle strain                        | 1 (<0.1) | 0        |
| Grade 3 (Severe)                     | 1 (<0.1) | 0        |
| Patella fracture                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)                     | 1 (<0.1) | 0        |
| Skin abrasion                        | 1 (<0.1) | 0        |
| Grade 3 (Severe)                     | 1 (<0.1) | 0        |
| Skin laceration                      | 0        | 1 (<0.1) |
| Grade 3 (Severe)                     | 0        | 1 (<0.1) |
| Subdural hemorrhage                  | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)           | 1 (<0.1) | 0        |
| Tibia fracture                       | 1 (<0.1) | 0        |
| Grade 3 (Severe)                     | 1 (<0.1) | 0        |
| Traumatic fracture                   | 1 (<0.1) | 0        |
| Grade 3 (Severe)                     | 1 (<0.1) | 0        |
| Wound necrosis                       | 0        | 1 (<0.1) |
| Grade 3 (Severe)                     | 0        | 1 (<0.1) |
| Investigations                       | 6 (0.3)  | 3 (0.3)  |
| Grade 3 (Severe)                     | 4 (0.2)  | 3 (0.3)  |
| Grade 4 (Life-Threatening)           | 2 (<0.1) | 0        |
| Creatinine renal clearance decreased | 2 (<0.1) | 2 (0.2)  |
| Grade 3 (Severe)                     | 2 (<0.1) | 2 (0.2)  |

| Blood creatine phosphokinase increased          | 2 (<0.1) | 1 (<0.1) |
|-------------------------------------------------|----------|----------|
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Grade 4 (Life-Threatening)                      | 2 (<0.1) | 0        |
| Aspartate aminotransferase increased            | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Blood triglycerides increased                   | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Transaminases abnormal                          | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Metabolism and nutrition disorders              | 4 (0.2)  | 4 (0.4)  |
| Grade 3 (Severe)                                | 4 (0.2)  | 4 (0.4)  |
| Abnormal loss of weight                         | 2 (<0.1) | 3 (0.3)  |
| Grade 3 (Severe)                                | 2 (<0.1) | 3 (0.3)  |
| Dehydration                                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Dyslipidemia                                    | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Hypertriglyceridemia                            | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Musculoskeletal and connective tissue disorders | 3 (0.1)  | 1 (<0.1) |
| Grade 3 (Severe)                                | 2 (<0.1) | 1 (<0.1) |
| Grade 4 (Life-Threatening)                      | 1 (<0.1) | 0        |
| Rhabdomyolysis                                  | 2 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)                      | 1 (<0.1) | 0        |
| Bone lesion                                     | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                | 0        | 1 (<0.1) |
| Fibromyalgia                                    | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                | 1 (<0.1) | 0        |

| Neoplasms benign, malignant, and unspecified | 2(-0,1)  | 1 (~0 1) |
|----------------------------------------------|----------|----------|
| (including cysts and polyps)                 | 2 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                             | 0        | 1 (<0.1) |
| Grade 4 (Life-Threatening)                   | 2 (<0.1) | 0        |
| Acute myeloid leukemia                       | 0        | 1 (<0.1) |
| Grade 3 (Severe)                             | 0        | 1 (<0.1) |
| Adenocarcinoma of colon                      | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)                   | 1 (<0.1) | 0        |
| Brain neoplasm                               | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)                   | 1 (<0.1) | 0        |
| Nervous system disorders                     | 6 (0.3)  | 3 (0.3)  |
| Grade 3 (Severe)                             | 4 (0.2)  | 3 (0.3)  |
| Grade 4 (Life-Threatening)                   | 1 (<0.1) | 0        |
| Grade 5 (Death)                              | 1 (<0.1) | 0        |
| Cerebrovascular accident                     | 2 (<0.1) | 0        |
| Grade 3 (Severe)                             | 1 (<0.1) | 0        |
| Grade 5 (Death)                              | 1 (<0.1) | 0        |
| Syncope                                      | 0        | 2 (0.2)  |
| Grade 3 (Severe)                             | 0        | 2 (0.2)  |
| Headache                                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)                             | 1 (<0.1) | 0        |
| Sciatica                                     | 1 (<0.1) | 0        |
| Grade 3 (Severe)                             | 1 (<0.1) | 0        |
| Seizure                                      | 0        | 1 (<0.1) |
| Grade 3 (Severe)                             | 0        | 1 (<0.1) |
| Seizure like phenomena                       | 1 (<0.1) | 0        |
| Grade 3 (Severe)                             | 1 (<0.1) | 0        |
| Subarachnoid hemorrhage                      | 1 (<0.1) | 0        |
| Grade 4 (Life-Threatening)                   | 1 (<0.1) | 0        |

| Psychiatric disorders       | 14 (0.6) | 9 (0.8)  |
|-----------------------------|----------|----------|
| Grade 3 (Severe)            | 8 (0.4)  | 4 (0.4)  |
| Grade 4 (Life-Threatening)  | 5 (0.2)  | 5 (0.5)  |
| Grade 5 (Death)             | 1 (<0.1) | 0        |
| Suicide attempt             | 7 (0.3)  | 3 (0.3)  |
| Grade 3 (Severe)            | 2 (<0.1) | 0        |
| Grade 4 (Life-Threatening)  | 5 (0.2)  | 3 (0.3)  |
| Suicidal ideation           | 3 (0.1)  | 4 (0.4)  |
| Grade 3 (Severe)            | 2 (<0.1) | 3 (0.3)  |
| Grade 4 (Life-Threatening)  | 1 (<0.1) | 1 (<0.1) |
| Depression                  | 3 (0.1)  | 1 (<0.1) |
| Grade 3 (Severe)            | 2 (<0.1) | 1 (<0.1) |
| Grade 4 (Life-Threatening)  | 1 (<0.1) | 0        |
| Major depression            | 1 (<0.1) | 2 (0.2)  |
| Grade 3 (Severe)            | 1 (<0.1) | 2 (0.2)  |
| Anxiety                     | 0        | 2 (0.2)  |
| Grade 4 (Life-Threatening)  | 0        | 2 (0.2)  |
| Alcohol withdrawal syndrome | 1 (<0.1) | 0        |
| Grade 3 (Severe)            | 1 (<0.1) | 0        |
| Bipolar disorder            | 0        | 1 (<0.1) |
| Grade 3 (Severe)            | 0        | 1 (<0.1) |
| Completed suicide           | 1 (<0.1) | 0        |
| Grade 5 (Death)             | 1 (<0.1) | 0        |
| Depression suicidal         | 1 (<0.1) | 0        |
| Grade 3 (Severe)            | 1 (<0.1) | 0        |
| Mental disorder             | 0        | 1 (<0.1) |
| Grade 3 (Severe)            | 0        | 1 (<0.1) |
| Psychotic disorder          | 1 (<0.1) | 0        |
| Grade 3 (Severe)            | 1 (<0.1) | 0        |
| Schizophrenia               | 0        | 1 (<0.1) |

| Grade 3 (Severe)                                 | 0        | 1 (<0.1) |
|--------------------------------------------------|----------|----------|
| Substance abuse                                  | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                 | 0        | 1 (<0.1) |
| Substance dependence                             | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                 | 0        | 1 (<0.1) |
| Substance use disorder                           | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                 | 1 (<0.1) | 0        |
| Substance-induced psychotic disorder             | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                 | 0        | 1 (<0.1) |
| Renal and urinary disorders                      | 4 (0.2)  | 2 (0.2)  |
| Grade 3 (Severe)                                 | 4 (0.2)  | 2 (0.2)  |
| Glycosuria                                       | 1 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                                 | 1 (<0.1) | 1 (<0.1) |
| Nephrolithiasis                                  | 1 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                                 | 1 (<0.1) | 1 (<0.1) |
| Ureteric stenosis                                | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                 | 1 (<0.1) | 0        |
| Ureterolithiasis                                 | 1 (<0.1) | 0        |
| Grade 3 (Severe)                                 | 1 (<0.1) | 0        |
| Reproductive system and breast disorders         | 0        | 2 (0.2)  |
| Grade 3 (Severe)                                 | 0        | 2 (0.2)  |
| Priapism                                         | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                 | 0        | 1 (<0.1) |
| Testicular mass                                  | 0        | 1 (<0.1) |
| Grade 3 (Severe)                                 | 0        | 1 (<0.1) |
| Respiratory, thoracic, and mediastinal disorders | 0        | 3 (0.3)  |
| Grade 3 (Severe)                                 | 0        | 3 (0.3)  |
| Pleural effusion                                 | 0        | 2 (0.2)  |

| Grade 3 (Severe)                       | 0        | 2 (0.2)  |
|----------------------------------------|----------|----------|
| Pneumothorax                           | 0        | 1 (<0.1) |
| Grade 3 (Severe)                       | 0        | 1 (<0.1) |
| Skin and subcutaneous tissue disorders | 2 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                       | 2 (<0.1) | 1 (<0.1) |
| Cellulite                              | 1 (<0.1) | 0        |
| Grade 3 (Severe)                       | 1 (<0.1) | 0        |
| Diabetic foot                          | 0        | 1 (<0.1) |
| Grade 3 (Severe)                       | 0        | 1 (<0.1) |
| Urticaria                              | 1 (<0.1) | 0        |
| Grade 3 (Severe)                       | 1 (<0.1) | 0        |
| Social circumstances                   | 0        | 1 (<0.1) |
| Grade 3 (Severe)                       | 0        | 1 (<0.1) |
| Physical assault                       | 0        | 1 (<0.1) |
| Grade 3 (Severe)                       | 0        | 1 (<0.1) |
| Vascular disorders                     | 1 (<0.1) | 2 (0.2)  |
| Grade 3 (Severe)                       | 1 (<0.1) | 2 (0.2)  |
| Hypertension                           | 1 (<0.1) | 1 (<0.1) |
| Grade 3 (Severe)                       | 1 (<0.1) | 1 (<0.1) |
| Hypertensive crisis                    | 0        | 1 (<0.1) |
| Grade 3 (Severe)                       | 0        | 1 (<0.1) |

DAIDS denotes Division of AIDS, F/TDF emtricitabine-tenofovir disoproxil fumarate, HIV human immunodeficiency virus, MedDRA Medical Dictionary for Regulatory Activities, and SC subcutaneous.

Grade 3 = Severe, 4 = Life-Threatening, 5 = Death; DAIDS Table for Grading the Severity of Adult and Pediatric Adverse Events, Version 2.1. Adverse events coded according to MedDRA Version 27.0. Treatment-emergent events began on or after study drug first dose date up through last exposure date for the randomized blinded study phase after permanent discontinuation of study drug or led to premature study drug discontinuation. Treatment-emergent injection-site reaction to study SC injection (related to study drug/procedure, MedDRA high level term=Injection-Site Reactions) began on or after first SC lenacapavir or placebo injection date. Multiple adverse events were counted only once per participant for the highest severity grade for each system organ class and preferred term. System organ classes were presented alphabetically and preferred terms within system organ classes were presented by decreasing order of the total frequencies.

|                                           | Lenacapavir<br>(N=2183) | F/TDF<br>(N=1088) |
|-------------------------------------------|-------------------------|-------------------|
| Participants any treatment-emergent       |                         | , ,               |
| adverse events leading to study drug      | $\overline{7}$ (0.2)    | 7 (0 ()           |
| discontinuation (excluding injection-site | 7 (0.3)                 | / (0.6)           |
| reactions) — no. (%)                      |                         |                   |
| Participants with any treatment-emergent  |                         |                   |
| adverse events leading to study drug      | 22(15)                  | 10 (0 0)          |
| discontinuation (including injection-site | 52 (1.5)                | 10 (0.9)          |
| reactions) — no (%)                       |                         |                   |
| Gastrointestinal disorders                | 1 (<0.1)                | 3 (0.3)           |
| Abdominal pain                            | 1 (<0.1)                | 1 (<0.1)          |
| Nausea                                    | 1 (<0.1)                | 1 (<0.1)          |
| Abdominal pain upper                      | 0                       | 1 (<0.1)          |
| Diarrhea                                  | 0                       | 1 (<0.1)          |
| General disorders and administration-site |                         |                   |
| conditions                                | 27 (1.2)                | 4 (0.4)           |
| Injection-site nodule                     | 17 (0.8)                | 0                 |
| Injection-site pain                       | 8 (0.4)                 | 2 (0.2)           |
| Injection-site induration                 | 2 (<0.1)                | 0                 |
| Injection-site granuloma                  | 1 (<0.1)                | 0                 |
| Injection-site mass                       | 0                       | 1 (<0.1)          |
| Injection-site ulcer                      | 1 (<0.1)                | 0                 |
| Malaise                                   | 0                       | 1 (<0.1)          |
| Edema peripheral                          | 1 (<0.1)                | 0                 |
| Infections and infestations               | 2 (<0.1)                | 0                 |
| Gastroenteritis                           | 1 (<0.1)                | 0                 |
| Onychomycosis                             | 1 (<0.1)                | 0                 |
| Investigations                            | 0                       | 2 (0.2)           |
| Creatinine renal clearance decreased      | 0                       | 2 (0.2)           |
| Neoplasms benign, malignant, and          |                         |                   |
| unspecified (including cysts and polyps)  | 1 (<0.1)                | 0                 |
| Brain neoplasm                            | 1 (<0.1)                | 0                 |

# Table S14. Adverse Events Leading to Premature Study Drug Discontinuation

| Nervous system disorders               | 0        | 1 (<0.1) |
|----------------------------------------|----------|----------|
| Headache                               | 0        | 1 (<0.1) |
| Renal and urinary disorders            | 0        | 1 (<0.1) |
| Nephropathy                            | 0        | 1 (<0.1) |
| Skin and subcutaneous tissue disorders | 3 (0.1)  | 0        |
| Rash                                   | 1 (<0.1) | 0        |
| Urticaria                              | 1 (<0.1) | 0        |
| Vasculitic rash                        | 1 (<0.1) | 0        |

F/TDF denotes emtricitabine-tenofovir disoproxil fumarate, MedDRA Medical Dictionary for Regulatory Activities, and SC subcutaneous. Adverse events coded according to MedDRA Version 27.0. Treatment-emergent events began on or after study drug first dose date up through last exposure date for the randomized blinded study phase after permanent discontinuation of study drug, or led to premature study drug discontinuation. Treatment-emergent injection-site reaction to study SC injection (related to study drug/procedure, MedDRA high level term=Injection-Site Reactions) began on or after first SC lenacapavir or placebo injection date. Multiple adverse events were counted only once per participant for the highest severity grade for each system organ class and preferred term. System organ classes were presented alphabetically and preferred terms within system organ classes were presented by decreasing order of the total frequencies.

| Laboratory Abnormality — no (%)      | Lenacapavir<br>(N=2183) | F/TDF<br>(N=1088) |
|--------------------------------------|-------------------------|-------------------|
| Participants with postbaseline value | 2153                    | 1071              |
| Grade 3                              | 184 (8.5)               | 122 (11.4)        |
| Grade 4                              | 59 (2.7)                | 25 (2.3)          |
| Hemoglobin (decreased)               | 2149                    | 1070              |
| Grade 3                              | 0                       | 1 (<0.1)          |
| Grade 4                              | 2 (<0.1)                | 0                 |
| Lymphocytes (decreased)              | 2146                    | 1068              |
| Grade 3                              | 7 (0.3)                 | 2 (0.2)           |
| Grade 4                              | 0                       | 1 (<0.1)          |
| Neutrophils (decreased)              | 2149                    | 1070              |
| Grade 3                              | 1 (<0.1)                | 3 (0.3)           |
| Grade 4                              | 1 (<0.1)                | 0                 |
| Platelets (decreased)                | 2147                    | 1069              |
| Grade 3                              | 1 (<0.1)                | 1 (<0.1)          |
| Grade 4                              | 2 (<0.1)                | 0                 |
| WBC (decreased)                      | 2149                    | 1070              |
| Grade 3                              | 0                       | 0                 |
| Grade 4                              | 0                       | 0                 |
| Albumin (decreased)                  | 2153                    | 1071              |
| Grade 3                              | 0                       | 0                 |
| Grade 4                              | 0                       | 0                 |
| Alkaline phosphatase (increased)     | 2153                    | 1071              |
| Grade 3                              | 0                       | 1 (<0.1)          |
| Grade 4                              | 0                       | 1 (<0.1)          |
| ALT (increased)                      | 2151                    | 1071              |
| Grade 3                              | 11 (0.5)                | 5 (0.5)           |
| Grade 4                              | 6 (0.3)                 | 1 (<0.1)          |

# Table S15. Grade 3 and 4 Laboratory Abnormalities

| AST (increased)                       | 2153     | 1071     |
|---------------------------------------|----------|----------|
| Grade 3                               | 14 (0.7) | 8 (0.7)  |
| Grade 4                               | 7 (0.3)  | 2 (0.2)  |
| Bicarbonate (decreased)               | 2151     | 1071     |
| Grade 3                               | 1 (<0.1) | 0        |
| Grade 4                               | 0        | 0        |
| Corrected calcium (hypercalcemia)     | 2153     | 1071     |
| Grade 3                               | 1 (<0.1) | 0        |
| Grade 4                               | 1 (<0.1) | 0        |
| Corrected calcium (hypocalcemia)      | 2153     | 1071     |
| Grade 3                               | 9 (0.4)  | 2 (0.2)  |
| Grade 4                               | 0        | 0        |
| Creatine kinase (increased)           | 2153     | 1071     |
| Grade 3                               | 38 (1.8) | 32 (3.0) |
| Grade 4                               | 44 (2.0) | 18 (1.7) |
| Creatinine (increased)                | 2153     | 1071     |
| Grade 3                               | 12 (0.6) | 8 (0.7)  |
| Grade 4                               | 0        | 2 (0.2)  |
| Creatinine clearance (decreased)      | 2153     | 1071     |
| Grade 3                               | 42 (2.0) | 38 (3.5) |
| Grade 4                               | 0        | 2 (0.2)  |
| Direct bilirubin (hyperbilirubinemia) | 2151     | 1071     |
| Grade 3                               | 12 (0.6) | 2 (0.2)  |
| Grade 4                               | 0        | 0        |
| Lipase (increased)                    | 2152     | 1071     |
| Grade 3                               | 12 (0.6) | 6 (0.6)  |
| Grade 4                               | 2 (<0.1) | 1 (<0.1) |
| Magnesium (hypomagnesemia)            | 2153     | 1071     |
| Grade 3                               | 10 (0.5) | 1 (<0.1) |
| Grade 4                               | 0        | 0        |

| Phosphate (hypophosphatemia)                                          | 2153     | 1071     |
|-----------------------------------------------------------------------|----------|----------|
| Grade 3                                                               | 2 (<0.1) | 1 (<0.1) |
| Grade 4                                                               | 0        | 0        |
| Serum glucose (fasting, hyperglycemia)                                | 1974     | 990      |
| Grade 3                                                               | 5 (0.3)  | 3 (0.3)  |
| Grade 4                                                               | 0        | 0        |
| Serum Glucose (nonfasting, hyperglycemia, maximum postbaseline grade) | 1201     | 605      |
| Grade 3                                                               | 4 (0.3)  | 3 (0.5)  |
| Grade 4                                                               | 0        | 1 (0.2)  |
| Serum glucose (hypoglycemia)                                          | 2153     | 1071     |
| Grade 3                                                               | 2 (<0.1) | 5 (0.5)  |
| Grade 4                                                               | 0        | 0        |
| Serum potassium (hyperkalemia)                                        | 2153     | 1071     |
| Grade 3                                                               | 4 (0.2)  | 1 (<0.1) |
| Grade 4                                                               | 1 (<0.1) | 1 (<0.1) |
| Serum potassium (hypokalemia)                                         | 2153     | 1071     |
| Grade 3                                                               | 0        | 0        |
| Grade 4                                                               | 0        | 0        |
| Serum sodium (hypernatremia)                                          | 2153     | 1071     |
| Grade 3                                                               | 0        | 1 (<0.1) |
| Grade 4                                                               | 1 (<0.1) | 1 (<0.1) |
| Serum sodium (hyponatremia)                                           | 2153     | 1071     |
| Grade 3                                                               | 0        | 0        |
| Grade 4                                                               | 0        | 0        |
| Total bilirubin (hyperbilirubinemia)                                  | 2153     | 1071     |
| Grade 3                                                               | 1 (<0.1) | 0        |
| Grade 4                                                               | 5 (0.2)  | 1 (<0.1) |
| Total cholesterol (fasting, hypercholesterolemia)                     | 1786     | 894      |
| Grade 3                                                               | 6 (0.3)  | 0        |
| Grade 4                                                               | 0        | 0        |

| Triglycerides (fasting, increased)  | 1785     | 894      |
|-------------------------------------|----------|----------|
| Grade 3                             | 12 (0.7) | 3 (0.3)  |
| Grade 4                             | 1 (<0.1) | 0        |
| LDL (fasting, increased)            | 1784     | 893      |
| Grade 3                             | 16 (0.9) | 6 (0.7)  |
| Grade 4                             | 0        | 0        |
| Uric acid (hyperuricemia)           | 2153     | 1071     |
| Grade 3                             | 1 (<0.1) | 2 (0.2)  |
| Grade 4                             | 0        | 0        |
| Urine glucose (glycosuria)          | 2153     | 1070     |
| Grade 3                             | 22 (1.0) | 15 (1.4) |
| Grade 4                             | 0        | 0        |
| Urine protein (proteinuria)         | 2153     | 1070     |
| Grade 3                             | 8 (0.4)  | 4 (0.4)  |
| Grade 4                             | 0        | 0        |
| Urine RBC (hematuria, quantitative) | 2153     | 1070     |
| Grade 3                             | 0        | 0        |
| Grade 4                             | 0        | 0        |

ALT denotes alanine aminotransferase, AST aspartate aminotransferase, DAIDS Division of AIDS, F/TDF emtricitabine-tenofovir disoproxil fumarate, LDL low-density lipoprotein, RBC red blood cell, and WBC white blood cell.

Denominator for percentage is the number of participants in safety analysis set with at least one postbaseline laboratory value for the test under evaluation. For nonfasting serum glucose hyperglycemia (which includes unknown fasting status): 1) maximum postbaseline toxicity grades, instead of treatment emergent abnormalities, were summarized, as most participants were fasting at baseline and treatment-emergent flag cannot be derived and 2) were excluded in "Participants with Postbaseline Value" summary as the treatment-emergent flag cannot be derived. Participants counted once for the maximum postbaseline severity for each test. Urinalysis (i.e., urine protein, urine glucose) highest grade is Grade 3. The incidence of any grade creatinine clearance (decreased) was lower in the lenacapavir group (41.4%) compared with the F/TDF group (52.4%). Fasting metabolic assessments are collected at Day 1, Week 26, and every 26 weeks. Severity grades were defined by DAIDS Table for Grading the Severity of Adult and Pediatric Adverse Events, Version 2.1.

| PrEP trial<br>— no. (%)  | Non-White<br>Race      | Hispanic/Latine | Cisgender/Gay,<br>Bi, and Other<br>MSM | Transgender<br>Women | Transgender<br>Men | Gender<br>Nonbinary |
|--------------------------|------------------------|-----------------|----------------------------------------|----------------------|--------------------|---------------------|
| iPrEx <sup>17</sup>      | 2068 (83)              | 1806 (72)       | 2470 (99)                              | 29 (1)               | 0                  | 0                   |
| IPERGAY <sup>18,*</sup>  | 34 (9)                 | -               | 400 (100)                              | 0                    | 0                  | 0                   |
| PROUD <sup>19</sup>      | 99 (19)                | -               | 543 (100)                              | 1 (< 1)              | 0                  | 0                   |
| DISCOVER <sup>20</sup>   | 868 (16) <sup>†</sup>  | 1318 (24)       | 5313 (99)                              | 74 (1)               | 0                  | 0                   |
| HPTN 083 <sup>21,‡</sup> | 3283 (72)              | 2110 (46)       | 3992 (87)                              | 570 (13)             | 0                  | 0                   |
| PURPOSE 2                | 2195 <sup>§</sup> (67) | 2053 (63)       | 2543 (78)                              | 476 (15)             | 43 (1)             | 209 (6)#            |

#### Table S16. PURPOSE 2 in Comparison with Previous PrEP Trials

MSM denotes men who have sex with men, and PrEP preexposure prophylaxis; hyphens in the table denote no data were available for the corresponding baseline characteristic.

\* Inclusion criteria were male or transgender female sex among participants who have sex with men; however, no transgender women participants were reported. <sup>†</sup>Race data were not available for eight participants. <sup>‡</sup>Four (<1%) participants preferred not to provide their gender identity; data on race were not available for 20 participants (includes data from Landovitz RJ, personal communication. October 7, 2024). <sup>§</sup>Data on race were not available for 10 participants. <sup>†</sup>Data on ethnicity were not available for one participant. <sup>#</sup>Nonbinary included n=6 individuals who identified as Travesti (all assigned male at birth) and n=4 individuals who identified as an "Other" gender (all assigned male at birth).

Table S17. Participants in PURPOSE 2 Reflect Global Populations of Cisgender Gay, Bisexual, and Other Men; Transgender Women; Transgender Men; and Gender Nonbinary Individuals Disproportionately Affected by HIV Acquisition and Historically Underrepresented in PrEP Clinical Trials

| Category                                           | Example                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disease, problem, or condition under investigation | Prevention of HIV-1 Acquisition                                                                                                                                                                                                                                                                                                                                                                                          |
| Special considerations related to:                 |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sex and gender and sexual orientation              | In the United States in 2022, 67% of the new HIV infections were among men who have sex with men, 2% were among transgender women, and $< 1\%$ each were among transgender men and gender nonbinary individuals. <sup>22,23</sup>                                                                                                                                                                                        |
|                                                    | In Latin America and Thailand, the HIV epidemic also disproportionately affects men who have sex with men and transgender women. <sup>24-26</sup>                                                                                                                                                                                                                                                                        |
|                                                    | In South Africa, there is a generalized HIV epidemic, with disproportionately higher HIV incidence in men who have sex with men and transgender women. <sup>27,28</sup>                                                                                                                                                                                                                                                  |
|                                                    | In this trial, 22% of participants were transgender or gender nonbinary.                                                                                                                                                                                                                                                                                                                                                 |
| Race or ethnic group                               | In the United States in 2022, 70% of the new HIV infections were among Black/African American (37%) and Hispanic/Latine (33%) people, despite these groups accounting for only 12% and 18% of the United States population, respectively. <sup>29</sup> In this trial, 67% of participants were non-White and 63% were Hispanic or Latine.                                                                               |
| Geography                                          | The 1.3 million new global HIV infections in 2023 included 450,000 infections in Eastern and Southern Africa, 300,000 in Asia and the Pacific, 120,000 in Latin America, and 56,000 in Western and Central Europe and North America. <sup>30</sup> The trial population was enrolled from seven different countries: Brazil, United States (including Puerto Rico), Peru, Thailand, South Africa, Argentina, and Mexico. |
| Age                                                | In the United States in 2022, 19% of HIV diagnoses were in people aged 13 to 24 years. <sup>23</sup> This trial                                                                                                                                                                                                                                                                                                          |

|                                          | included adolescents and 34% of participants were aged 16 to $\leq$ 25 years.                                                                                                                                   |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overall representativeness of this trial | The participants in the present trial are representative<br>of diverse global populations who have high likelihood<br>of HIV acquisition and who have been historically<br>underrepresented in clinical trials. |

## References

1. Parkin N, Gao F, Grebe E, et al. Facilitating next-generation pre-exposure prophylaxis clinical trials using HIV recent infection assays: a consensus statement from the forum HIV prevention trial design project. Clin Pharmacol Ther 2023;114:29-40.

2. US Centers for Disease Control and Prevention. Laboratory testing for the diagnosis of HIV infection: updated recommendations. June 27, 2014

(https://stacks.cdc.gov/view/cdc/23447).

**3.** US Centers for Disease Control and Prevention. Technical update on HIV-1/2 differentiation assays. August 12, 2016 (<u>https://stacks.cdc.gov/view/cdc/40790</u>).

4. US Centers for Disease Control and Prevention. 2018 quick reference guide: recommended laboratory HIV testing algorithm for serum or plasma specimens. 2018 (https://stacks.cdc.gov/view/cdc/50872).

**5.** Cespedes M, Das M, Hojilla JC, et al. Proactive strategies to optimize engagement of Black, Hispanic/Latinx, transgender, and nonbinary individuals in a trial of a novel agent for HIV pre-exposure prophylaxis (PrEP). PLoS One 2022;17:e0267780.

6. US Centers for Disease Control and Prevention. False-positive HIV test results. 2018 (https://www.cdc.gov/hiv/pdf/partners/testing/cdc-hiv-factsheet-false-positive-test-results.pdf).

7. Kassanjee R, McWalter TA, Bärnighausen T, Welte A. A new general biomarker-based incidence estimator. Epidemiology 2012;23:721-8.

**8.** Gao F, Glidden DV, Hughes JP, Donnell DJ. Sample size calculation for active-arm trial with counterfactual incidence based on recency assay. Stat Commun Infect Dis 2021;13:20200009.

67

**9.** Kassanjee R, Pilcher CD, Busch MP, et al. Viral load criteria and threshold optimization to improve HIV incidence assay characteristics. AIDS 2016;30:2361-71.

**10.** Duong YT, Kassanjee R, Welte A, et al. Recalibration of the limiting antigen avidity EIA to determine mean duration of recent infection in divergent HIV-1 subtypes. PLoS One 2015;10:e0114947.

**11.** Voetsch AC, Duong YT, Stupp P, et al. HIV-1 recent infection testing algorithm with antiretroviral drug detection to improve accuracy of incidence estimates. J Acquir Immune Defic Syndr 2021;87:Suppl 1:S73-80.

**12.** Klock E, B., Laeyendecker O, Fernandez R, et al. Evaluation of cross-sectional HIV incidence testing in the HPTN 071 (PopART) trial. Presented at: Conference on Retroviruses and Opportunistic Infections (CROI); 2020; Boston, MA. Poster 976

(https://www.croiconference.org/abstract/evaluation-of-cross-sectional-hiv-incidence-testing-inthe-hptn-071-popart-trial/).

**13.** Ulm K. A simple method to calculate the confidence interval of a standardized mortality ratio (SMR). Am J Epidemiol 1990;131:373-5.

**14.** Shao Y, Gao F. Likelihood-based inferences for active-arm trial with counterfactual incidence based on recency assay. Statistical Communications in Infectious Diseases 2024;16.

**15.** Li HQ, Tang ML, Poon WY, Tang NS. Confidence intervals for difference between two Poisson rates. Commun Stat Simul Comput 2011;40:1478-93.

16. Rohatgi VK. Statistical Inference. Mineola, NY: Dover Publications, Inc., 2003.

**17.** Grant RM, Lama JR, Anderson PL, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 2010;363:2587-99.

**18.** Molina JM, Capitant C, Spire B, et al. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N Engl J Med 2015;373:2237-46.

**19.** Dolling DI, Desai M, McOwan A, et al. An analysis of baseline data from the PROUD study: an open-label randomised trial of pre-exposure prophylaxis. Trials 2016;17:163.

**20.** Mayer KH, Molina JM, Thompson MA, et al. Emtricitabine and tenofovir alafenamide vs emtricitabine and tenofovir disoproxil fumarate for HIV pre-exposure prophylaxis (DISCOVER): primary results from a randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial. Lancet 2020;396:239-54.

**21.** Landovitz RJ, Donnell D, Clement ME, et al. Cabotegravir for HIV prevention in cisgender men and transgender women. N Engl J Med 2021;385:595-608.

**22.** Centers for Disease Control and Prevention. HIV surveillance supplemental report: estimated HIV incidence and prevalence in the United States, 2017–2021. 2023

(https://stacks.cdc.gov/view/cdc/149080).

**23.** Centers for Disease Control and Prevention. HIV surveillance report: diagnoses, deaths, and prevalence of HIV in the United States and 6 territories and freely associated states, 2022. 2024 (https://stacks.cdc.gov/view/cdc/156509).

**24.** Chow JY, Konda KA, Borquez A, et al. Peru's HIV care continuum among men who have sex with men and transgender women: opportunities to optimize treatment and prevention. Int J STD AIDS 2016;27:1039-48.

**25.** Saffier IP, Kawa H, Harling G. A scoping review of prevalence, incidence and risk factors for HIV infection amongst young people in Brazil. BMC Infect Dis 2017;17:675.

**26.** van Griensven F, Phanuphak N, Manopaiboon C, et al. HIV prevalence and incidence among men who have sex with men and transgender women in Bangkok, 2014-2018: Outcomes of a consensus development initiative. PLoS One 2022;17:e0262694.

**27.** Sandfort TGM, Mbilizi Y, Sanders EJ, et al. HIV incidence in a multinational cohort of men and transgender women who have sex with men in sub-Saharan Africa: findings from HPTN 075. PLoS One 2021;16:e0247195.

**28.** Sullivan PS, Phaswana-Mafuya N, Baral SD, et al. HIV prevalence and incidence in a cohort of South African men and transgender women who have sex with men: the Sibanye Methods for Prevention Packages Programme (MP3) project. J Int AIDS Soc 2020;23 Suppl 6:e25591.

**29.** HIV.gov. U.S. Statistics. 2024 (<u>https://www.hiv.gov/hiv-basics/overview/data-and-trends/statistics</u>).

**30.** UNAIDS. Global HIV & AIDS statistics — fact sheet. 2024 (<u>https://www.unaids.org/en/resources/fact-sheet</u>).