

IAS 2024: What Matters Most

HIV PREVENTION

- PURPOSE 1 LEN PrEP in ciswomen in S Africa & Uganda.
- HPTN 084 CAB PrEP in pregnancy
- HPTN 083 Viral load test predictive value
- Low rates of HIV Testing Prior and During CAB PrEP

HIV TREATMENT

- BEYOND CAB/RPV effectiveness and satisfaction in clinical practice
- IMPAACT 2017 CAB/RPV switch in adolescents (global)
- SOLAR-3D DTG/3TC in treatment experienced but suppressed
- DYAD DTG/3TC switch from BFTAF – 96-week data
- PASO-DOBLE DTG/3TC vs BFTAF
- More Artistry-1 data Oral BIC+LEN switch
- VH184 3rd Generation INSTI

HIV COMPLICATIONS

- Reprieve Trial ABC and MACE
- AFRICOS HTN and DTG
- Anal Cancer Screening Mt Sinai data
- DOXYVAC 96-week data on resistance
- Multi-morbidity in older PWH in US South

COVID-19

- Circulating variants now
- Vaccination update soon

MPOX

- Clade 1 resurgence
- PALM 007 TPOXX efficacy
- Vaccination

HIV Prevention

PURPOSE 1: Twice-Yearly LEN Injections vs Daily Oral Tenofovir as PrEP in Cisgender Women

PURPOSE 1: HIV Incidence in mITT Population at Interim Analysis

 At baseline, median age 21 yr, 23%-56% aged 16-18 yr, ~25% with any STI

Comparison	HIV Incidence Rate Ratio (95% CI)*	<i>P</i> Value
LEN vs background HIV incidence	0 (0.00-0.04)	<.001
FTC/TAF vs background HIV incidence	0.84 (0.55-1.28)	.21
LEN vs FTC/TDF HIV incidence	0 (0.00-0.10)	<.001
FTC/TAF vs FTC/TDF HIV incidence	1.20 (0.67-2.14)	

^{*}People found to have HIV at study entry excluded from analysis.

- Zero HIV infections occurred in cisgender women receiving LEN
- In oral FTC/TAF arm, HIV incidence no different from background and treatment adherence was poor

PURPOSE 1: Treatment Adherence and ISRs

- Injections given on time in
 - 91.5% (4545/4967) at Wk 26
 - 92.8% (2025/2181) at Wk 52
- On-time injection rate similar for LEN and placebo
- Adherence to oral tablets
 was low based on TDF-DP
 concentration for both FTC/TAF
 and FTC/TDF, declined over time
- Pregnancies were common and outcomes were similar to those expected for the population

 Among 25,329 injections, 4 ISRs led to treatment discontinuation

PURPOSE 1: Treatment Adherence and ISRs

- Injections given on time in
 - 91.5% (4545/4967) at Wk 26
 - 92.8% (2025/2181) at Wk 52
- On-time injection rate similar for LEN and placebo
- Adherence to oral tablets
 was low based on TDF-DP
 concentration for both FTC/TAF
 and FTC/TDF, declined over time
- Pregnancies were common and outcomes were similar to those expected for the population

 Among 25,329 injections, 4 ISRs led to treatment discontinuation

PURPOSE 1 Next Steps

HPTN 084 Open-Label Extension: Safety Evaluation of LA CAB During Pregnancy

International, randomized, double-blind phase III trial, with evaluation of OLE in pregnant individuals
offered the choice of LA CAB or FTC/TDF from 2022 onwards

Primary outcomes: pregnancy incidence, maternal AE incidence, individual and composite pregnancy outcomes: birth including spontaneous abortion <20 wk or IUFD; stillbirth ≥20 wk or premature birth <37 wk or small gestational age; infant outcomes</p>

OLE participant disposition

OLE pregnancy outcomes, by exposure

HPTN 083: HIV-1 RNA Screening in Cisgender Men and Transgender Women Receiving LA CAB for PrEP

■ In original HPTN083 PrEP study, in both LA CAB and FTC/TDF arms, HIV detection with antigen/antibody testing was delayed vs with qualitative HIV-1 RNA testing²⁻³

Delays in Diagnosis, Median Days ³	Baseline Infections	Incident Infections
LA CAB for PrEP	62	98
Oral FTC/TDF for PrEP	34	31

- Based on these results, 2021 CDC guidelines recommend HIV-1 RNA assays to monitor people on oral or LA injectable PrEP⁴
- Current analysis of OLE participants (LA CAB only) through November 30, 2023, calculated positive predictive value and false positive rates of isolated positive RNA results and assessed screening sensitivity¹

HPTN 083: HIV-1 RNA Testing Results

- Out of 26,528 HIV-1 RNA tests,
 22 were false positives
 - Of these, 7 resulted in subsequent
 LA CAB administration delays
- A single, isolated positive HIV-1 RNA test result was uncommon, but when it occurred, was frequently a false positive

Results From Isolated Positive HIV-1 RNA Tests

Patient Group	PPV, % (95% CI)	False Pos Rate, % (95% CI)
Overall	18.5 (7.0-38.7)	0.08 (0.05-0.13)
No LA CAB	60	0.06
in last 6 mo	(17-92.7)	(0.01-0.25)
LA CAB	9.1	0.09
in last 6 mo	(1.6-30.6)	(0.05-0.14)

- HIV-1 RNA assay performed better in those who had not received LA CAB in the past 6 mo
- Repeat HIV-1 RNA testing can clarify whether the initial positive result is indeed an HIV infection

HIV Testing during CAB PrEP - Opera Cohort

Hsu. AIDS 2024. .

- CDC guidelines and CAB package insert indicate HIV testing before CAB PrEP initiated and at time of each injection visit.
- OPERA Cohort (1M people at 103 clinics in US): Among 560 CAB PrEP users, HIV testing within 1 week and within 4 weeks prior to injection assessed.

HIV Testing during CAB PrEP - Opera Cohort

- CDC guidelines and CAB package insert indicate HIV testing before CAB PrEP initiated and at time of each injection visit.
- OPERA Cohort (1M people at 103 clinics in US): Among 560 CAB PrEP users, HIV testing prior to injections was assessed.

Why does this matter? HIV Prevention

- **Lenacapavir** as an every 6-month subcutaneously injection is progressing to become a major advance in HIV prevention. Clinical trials data continue to show greater adherence to injected PrEP and user preference data strongly supports semi-annual PrEP option.
- The currently approved injectable PrEP, cabotegravir, is safe in pregnancy.
- **Viral load** as a screening test for people on CAB PrEP, had very low positive predictive value, especially for those adherent/taking to CAB with most isolated detected results being false.
- However, in clinical practice, there may be **suboptimal HIV testing** before and during CAB PrEP, risking missed infections.

HIV Treatment

BEYOND Study — Pragmatic study design, 27 US clinics.

CVF, confirmed virologic failure; HCP, healthcare provider. ^aResistance test results were collected, if available, at baseline and at the time of or after treatment discontinuation.

- 308 patients initiated CAB/RPV
 - 272 completed 12-month follow-up
 - 75 designated users Inconsistent with the Label (not suppressed at start, prior resistance, prior failure)

91% on time injections

Table 2. Virologic Outcomes Observed at Month 6 and Month 12 Based on Most Recent Viral Load

		Month 6			Month 12a	
Category	CWL (N=233)	IWL (N=75)	Total (N=308)	CWL (N=210)	IWL (N=62)	Total (N=272)
Total participants with viral load data at <u>both</u> baseline and respective time point, n ^b	206	60	266	156	44	200
Participants with baseline viral load <50 copies/mL, nb	206	42	248	156	31	187
<50 copies/mL, n (%)	198 (96)	37 (88)	235 (95)	153 (98)	28 (90)	181 (97)
≥50 copies/mL, n (%)	8 (4)	5 (12)	13 (5)	3 (2)	3 (10)	6 (3)
Participants with baseline viral load ≥50 copies/mL, n ^b	0	18	18	0	13	13
<50 copies/mL, n (%)	NA	17 (94)	17 (94)	NA	13 (100)	13 (100)
≥50 copies/mL, n (%)	NA	1 (6)	1 (6)	NA	0	0
CVFs, n (%) ^c	2 (1)	4 (5)	6 (2)	0	1 (2)	1 (<1)

CVF, confirmed virologic failure; NA, not applicable. ^aPopulation with ≥1 viral load test between Month 6 and 12. ^bBased on most recent viral load test. ^cProportions calculated using total N for each column. Cumulative CVFs through Month 12: 7/308 (2%) overall; 2/233 (1%) CWL; 5/75 (7%) IWL.

- Through Month 12, 40 participants had discontinued CAB+RPV LA (CWL, n=27; IWL, n=13). The most common HCP-reported reasons for discontinuation were:
 - Medication cost or access issues
 - Patient preference
 - ISRs or injection pain
 - "Other"

IMPAACT 2017/MOCHA: Switch to LA CAB + RPV in Adolescents With HIV

- Multicenter, open-label, noncomparative phase I/II study
 - Cohort 2 enrolled at 18 global sites including US, Uganda, Botswana, South Africa, Thailand

- Primary outcome: safety (adverse events, deaths) through Wk 24
- Secondary outcomes: pharmacokinetics, plasma HIV-1 RNA levels, number of participants with virologic failure, and adverse events through Wk 48

IMPAACT 2017/MOCHA: Safety, Virologic Efficacy, PK, and Participant Experience Through Wk 48

- Wk 48 virologic success per FDA snapshot: 97.2%
 - All with Wk 48 assessment (n = 140) had HIV-1 RNA <50 c/mL
- No cases of CVF (2 consecutive HIV-1 RNA ≥200 c/mL)
- Median pre-dose CAB and RPV concentrations at Wk 48 approximated those in adults and were above respective proteinadjusted IC₉₀

All 140 participants who responded to Wk 48 Preference Questionnaire preferred LA injections to daily oral treatment

SOLAR-3D: Switching to DTG/3TC in Heavily Treatment– Experienced People Who Are Virologically Suppressed

Prospective, open-label, comparative study

Adults with HIV with HIV-1 RNA <50 copies/mL for ≥6 mo on any stable 2-/3-/4-drug ART for ≥6 mo; prior virologic failure* (N = 100)

*≥2 prior ART with either: failure to attain HIV1-RNA <50 copies/mL, confirmed rebound >200 copies/mL, or documented genotypic/phenotypic resistance.

- Primary endpoint: proportion of participants with HIV-1 RNA ≥50 copies/mL at Wk 48 and 96 (FDA Snapshot, ITT-E, per protocol)
- Secondary endpoints: HIV-1 RNA <50 copies/mL at Wk 48 and 96 (FDA Snapshot, ITT-E, per protocol), discontinuations from CVF (HIV-1 RNA ≥50 copies/mL followed by HIV-1 RNA ≥200 copies/mL)

Baseline Characteristics:

- Participants with prior
 M184V/I had significantly greater:
 - Median age
 - Median time since HIV diagnosis
 - Median ART duration
 - Median prior ART regimens
 - Median duration of suppression

SOLAR-3D: Switch Characteristics

Characteristic	Prior M184V/I (n = 50)	No Prior M184V/I (n = 50)
On 3TC/FTC, n (%)	34 (68)	39 (78)
Median time on DTG/3TC, wk (IQR)	137.4 (133-151)	138.3 (132-151)
Median CD4 at switch CD4% (IQR) Absolute count, cells/mm³ (IQR) <200 cells/mm³, n (%) <350 cells/mm³, n (%)	27 (24-37) 617 (412-758) 1 (2) 7 (14)	32 (27-39) 593 (434-812) 0 3 (6)
Median HIV-1 RNA at switch Copies/mL (IQR) Log ₁₀ (IQR) HIV-1 RNA >50 copies/mL, n (%) TND, n (%)	1 (1-19) 0 (0-1.3) 1 (2)* 28 (56)	1 (1-19) 0 (0-1.3) 1 (2) [†] 30 (60)

Historical GT vs Proviral DNA NGS, n (%)	Prior M184V/I (n = 50)	No Prior M184V/I (n = 50)
M184V/I on historical GT, n (%)	50 (100)	0
Proviral DNA by NGS, n(%) M184V/I present M184V/I absent K65R present K65R present with Q151M	41 (82) 15 (37) 26 (63) 1 92) 0	29 958) 0 29 (100) 0 1

Slide credit: clinicaloptions.com

^{*}n = 1 participant with HIV-1 RNA <50 copies/mL at screening had HIV-1 RNA 73 copies/mL at baseline.

[†]n = 1 participant with HIV-1 RNA <50 copies/mL at screening had HIV-1 RNA 4150 copies/mL at baseline.

SOLAR-3D: Virologic Outcomes

	ITT-E			
	HIV-1 RNA ≥50 copies/mL, n (%)	Prior M184V/I (n = 50)	No Prior M184V/I (n = 50)	
Primary	Wk 48	1 (2)	3 (6)	
Endpoint	Wk 96	2 (4)	1 (2)	
,	Wk 144	2 (4)	3 (6)	
	HIV-1 RNA <50 copies/mL, n (%)			
Secondary	Wk 48	46 (92)	44 (88)	
Endpoint	Wk 96	42 (84)	44 (88)	
	Wk 144	37 (74)	36 (72)	

Per-Protocol		
HIV-1 RNA ≥50 copies/mL, n/N (%)	Prior M184V/I (n = 50)	No Prior M184V/I (n = 50)
Wk 48	1/47 (2.1)	3/47 (6.4)
Wk 96	2/44 (4.6)	1/45 (2.2)
Wk 144	2/39 (5.1)	3/39 (7.7)
HIV-1 RNA <50 copies/mL, n/N (%)		
Wk 48	46/47 (97.9)	44/47 (93.6)
Wk 96	42/44 (95.5)	44/45 (97.8)
Wk 144	37/39 (94.9)	36/39 (92.3)

- No treatment-emergent resistance observed in either group and no participants discontinued treatment for CVF
- No new safety signals observed

DYAD Study: Switching to DTG/3TC vs continuing BFTAF in virologically suppressed people with HIV

- Single center study (Orlando)
- Adds to TANGO and SALSA DTG/3TC switch studies by focusing on those on BFTAF

^{*}Open-label extension follows patients after they exit DYAD in the real-world and collects 96- and 144-week efficacy and safety data recorded in the EMR

DYAD Study: Switching to DTG/3TC vs continuing BFTAF in virologically suppressed people with HIV

Figure 1. Virologic outcomes at Week 48 by FDA Snapshot analysis

ITT-E: B/F/TAF (N=73)
ITT-E: DTG/3TC (N=149)

Efficacy data evaluable: B/F/TAF (N=64)
Efficacy data evaluable: DTG/3TC (N=133)

HIV-1 RNA >50 c/mL
Primary endpoint

No virologic data

Abbreviations. B, bictegravir; F, emtricitabine; TAF, tenofovir alafenamide; DTG, dolutegravir; 3TC, lamivudine

Table 2. Snapshot outcomes at Week 48

	DTG/3TC N=149	B/F/TAF N=73	Adjusted Treatment Difference (95% CI)
HIV-1 RNA≥50 c/mL	6 (4)	5 (7)	-2.8% (-11.4%, 3.1%)
HIV-1 RNA<50 c/mL	127 (85)	59 (81)	4.4% (-5.6%. 16.0%)
No virologic data	16 (11)	9 (12)	

Abbreviations. B, bictegravir; F, emtricitabine; TAF, tenofovir alafenamide; DTG, dolutegravir; 3TC, lamivudine; CI, confidence interval; c/ml, copies/ml.

At Week 48, 6 (4%) participants on DTG/3TC and 5 (7%) on B/F/TAF had HIV-1 RNA≥50 c/mL (treatment difference -2.8%, 95% confidence interval [-11.4%, 3.1%]) meeting noninferiority criteria

DYAD Study: Switching to DTG/3TC vs continuing BFTAF in virologically suppressed people with HIV

• DTG/3TC did not lead to significant difference in change of lipids or creatinine. eGFR decline in DTG/3TC that was small but statistically significant.

PASO DOBLE: Switching to DTG/3TC vs BFTAF in virologically suppressed people with HIV

Multicenter, randomized, open-label phase IV trial in Spain

Adults with HIV-1 RNA <50 c/mL for ≥24 wk; current ART with ≥1 pill/day including either COBI booster, EFV, or TDF; no earlier VF or ART resistance; no previous use of DTG or BIC; no chronic HBV

(N = 553)

- Primary endpoint: plasma HIV-1 RNA ≥50 c/mL at Wk 48 by FDA Snapshot with noninferiority margin of 4%
- Key secondary endpoints: efficacy, safety, tolerability, weight change

PASO-DOBLE: Baseline ART Regimens

Agent/Class, n (%)	DTG/3TC (n = 277)	BIC/FTC/TAF (n = 276)
NRTI 1		
■ TAF	77 (27.8)	78 (28.3)
ABC	59 (21.3)	52 (18.8)
■ TDF	92 (33.2)	103 (37.3)
No NRTI 1	49 (17.7)	43 (15.6)
NRTI 2		
■ 3TC	70 (25.3)	64 (23.2%)
■ FTC	182 (65.7)	190 (68.8%)
None	25 (9.0)	22 (8.0%)
Core drug		
NNRTI only	138 (49.8)	141 (51.1)
INSTI only	44 (15.9)	49 (17.8)
PI only	93 (33.6)	82 (29.7)
>1 core drugs	2 (0.7)	4 (1.4)

PASO-DOBLE: Virologic Efficacy

- By Wk 48, \geq 1 virologic blip in 5.8% (16/277) receiving DTG/3TC and in 9.4% (26/276) receiving BIC/FTC/TAF; P = .106
 - Through Wk 48, 98 vs 152 total blips in those receiving DTG/3TC and BIC/FTC/TAF, respectively
- Confirmed virologic failure through Wk 48 in 1 participant receiving BIC/FTC/TAF vs 0 in those receiving DTG/3TC; no cases of emergent resistance in either arm

C C O

PASO-DOBLE: Body Weight Outcomes at Wk 48

Outcome at Wk 48	DTG/3TC (n = 265)	BIC/FTC/TAF (n = 254)	Mean Adjusted Difference or OR (95% CI)
Weight change from baseline, kg	+0.89	+1.81	+0.92 (0.17-1.66)
BMI change from baseline, kg/m ²	+0.32	+0.64	+0.32 (0.06-0.58)
Percent of participants with weight gain >5% *Adjusted OR	20.0	29.9	1.81* (1.19-2.76) <i>P</i> = .006

 Prior use of ABC or TDF predisposed to greater weight gain with BIC/FTC/TAF than DTG/3TC (less weight gain)

PASO DOBLE: Switching to DTG/3TC vs BFTAF in virologically suppressed people with HIV

Martinez. AIDS 2024. Abstr OAB3606LB.

PASO-DOBLE: Body Weight Outcomes by Baseline NRTI

- Change in weight with BIC/TAF/FTC may depend on NRTI of previous regimen
 - In DTG/3TC arm, proportion with >5% weight gain was similar regardless of BL NRTI
 - In BIC/FTC/TAF arm, proportion with >5% weight gain was highest after switch from TDF or ABC

ARTISTRY-1: Switch to Oral BIC + LEN in People With Virologically Suppressed HIV on Complex ART

- Multicenter, randomized, open-label phase II/III study
- In primary 24-wk analysis, BIC + LEN effectively maintained virologic suppression¹

■ Wk 48 endpoints: proportion with HIV-1 RNA <50 c/mL (FDA Snapshot), CD4+ count change from baseline, AEs²

Complex ART at baseline:

- 41.4% taking ART dosed 2x/day
- Pills/day: 2 (43.0%), 3 (18.8%), 4 (10.9%), ≥5 (27.3%)
- 72% on a PI; among those,
 66% received a PI + INSTI

Baseline Characteristics:

- Median age, yr: 60 (26-79)
- Male at birth, n (%): 104 (81.2)
- White, n (%): 83 (64.8)

Slide credit: clinicaloptions.com

ARTISTRY-1: Virologic Suppression at Wk 48 With Switch to Oral BIC + LEN

^{*}No virologic data in Wk 48 window: n = 2. †No virologic data in Wk 48 window: n = 4.

Changes in CD4+ cell count and percentage were comparable among treatment groups

CCO

VH184 – 3rd generation INSTI: Phase 1 trial

- VH4524184 (VH-184) is a third-generation INSTI with long-acting potential in development for HIV-1 treatment
- In vitro, VH-184 active against DTG and CAB resistant viruses

Double-blind, randomized, placebo-controlled, phase 1, first-time-in-human study of VH-184

BMI, body mass index; MAD, multiple ascending dose; MDZ, midazolam; PK, pharmacokinetics; QD, once daily, SAD, single ascending dose; VH-184, VH4524184.

"VH-184 administered on Days 2-15; MDZ administered on Days 1 and 15.

VH184 – 3rd generation INSTI: Phase 1 trial

- VH4524184 (VH-184) is a third-generation INSTI with long-acting potential in development for HIV-1 treatment
- In vitro, VH-184 active against DTG and CAB resistant viruses

Why does this matter? HIV Treatment

- Real-er world data demonstrate experience with CAB/RPV outside of clinical trials to be generally goof among those desiring injectable therapy.
- More data support use of DTG/3TC in people with virus harboring 184V but studies have been small.
- Switching to DTG/3TC from BFTAF maintains viral suppression without major changes to metabolic parameters. DYAD and PASO DOBLE suggest possible weight difference between DTG/3TC and BFTAF following switch, especially from TDF or ABC.
- Oral LEN+BIC may be a simple option for people on complex regimens.
- VH-184 among new ART that can be long acting and be active against virus resistant to current therapies.

HIV Complications

REPRIEVE: Risk of Cardiovascular Events With ABC in People With HIV

- Multicenter, randomized, double-blind study of people with HIV (N = 7769) enrolled 2015-2019 with follow-up through July 2023
 - On stable ART for ≥180 days
 - CD4+ cell count >100 c/mm³
 - Age 40-75 yr
 - At low to moderate risk of CVD
- Study demonstrated 36% reduction in MACE (including MI, TIA/stroke, PAD, revascularization, CV death) with pitavastatin vs placebo

- Current analysis in ITT population assessed effect of exposure to ABC on first MACE, median follow-up of 5.6 yr
- 22% had history of ABC exposure (n = 1702)
 - 9% former use (median 3.0 yr)
 - 13% use at randomization (median 1.47 yr)
- Median ASCVD risk score (Q1, Q3):
 - Prior ABC exposure 5.40 (3.10, 7.80)
 - No ABC exposure 4.20 (1.90. 6.80)
 - Total population 4.50 (2.10, 7.00)

REPRIEVE: Risk of Major Cardiovascular Events (MACE) With ABC in People With HIV

Cumulative Incidence of MACE with Abacavir

REPRIEVE: Major Cardiovascular Events

- Current and former use of ABC was associated with a ~42%-50% higher risk of subsequent MACE
 - ABC effect on MACE was not changed by exposure to INSTIs, NNRTIs, or PIs
- Current and former use of TDF, PIs, and thymidine analogs were not associated with subsequent MACE

AFRICOS: Incident Hypertension and DTG-Based ART

- Prospective cohort analysis of incidence of HTN in people with HIV receiving ART (anchor drug: DTG, EFV, NVP, or PI/RTV) and people without HIV in Kenya, Nigeria, Tanzania, and Uganda
 - Exclusion criteria: HTN, people without HIV who seroconverted, pregnancy
 - Follow-up every 6 mo after enrollment visit
- Incident HTN: persistently elevated BP (SBP ≥140 mm Hg and/or DBP ≥90 mm Hg) at ≥2 consecutive study visits, or receipt of BP-lowering medication
- Current analysis assessed association between DTG and incident HTN in N = 3250 people with ≥2 study visits

AFRICOS: Study Population and Incident Hypertension

Baseline Characteristic	Study Population (N = 3250)
HIV status, n (%) With HIV Without HIV	2705 (84.4) 545 (16.8)
Sex, n (%) • Male • Female	1370 (42.2) 1880 (57.8)
Mean age at enrollment, yr (SD)	36 (12)
 Study site, n (%) Kayunga, Uganda South Rift Valley, Kenya Kisumu, Kenya Mbeya, Tanzania Abuja and Lagos, Nigeria 	575 (17.7) 1142 (35.1) 641 (19.7) 555 (17.1) 337 (10.4)

Study group	Incident HTN, n (%)	Median Follow-up, Yr (IQR)
People with HIV with ART anchor exposure		
■ DTG	1907 (70.5)	3.4 (2.2-4.0)
EFVNVPPI/RTV	1737 (64.2) 615 (22.7) 310 (11.5)	4.2 (3.0-5.5) 4.5 (3.5-5.4) 6.0 (3.7-7.9)
People without HIV	545 (100)	7.5 (5.2-8.7)

 427 (13.1%) of participants had incident HTN during study follow-up

AFRICOS: Incident Hypertension Across Anchor ART Groups and in People Without HIV

- DTG was not associated with significantly increased risk of HTN compared with EFV,
 NVP, or PI/RTV use or compared with people without HIV
- DTG was associated with significantly lower hazards of HTN compared with NVP

Anal Cancer Screening Effectiveness

- Five different anal cancer screening strategies are listed in guidelines
- Effectiveness of screening approaches assessed among 1,620 PWH at Mt Sinai who underwent anal cytology, hrHPV testing, and highresolution anoscopy. Anal HSIL rate = 42%

	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	HRAs (%)
Cytology alone	88	30	48	77	77
Cytology + hrHPV testing triage of >ASCUS	85	47	54	81	67
hrHPV testing alone	96	27	49	92	83
hrHPV testing + cytology triage of hrHPV positive	85	48	54	81	66
Cytology + hrHPV co-testing	89	40	52	83	72

- 1. Cytology alone
- 2. Cytology with hrHPV testing triage of >ASCUS
- 3. hrHPV testing alone
- 4. hrHPV testing with cytology triage of hrHPV positive
- 5. Cytology and hrHPV co-testing

- All strategies showed comparable performance metrics.
- hrHPV testing alone had highest sensitivity and NPV but triggered the most diagnostic procedures
- hrHPV with cytology triage showed the highest specificity

Multicenter, 2 x 2 factorial randomized, open-label, superiority, phase III trial (NCT04597424)

DoxyVac Trial

Screening for bacterial STI every 3 months
Dramatic reduction in bacterial STIs incidence

	Syphilis	Chlamydia	Gonorrhea
Relative risk reduction of STIs incidence (DoxyPEP arm vs noPEP arm)	79%	86%	33%

Molina et al, Lancet Inf Dis, 2024 May 23:S1473-3099(24)00236-6.

Conclusions

All GC isolates were resistant to tetracycline but the rate of high-level resistance was higher in the DoxyPEP arm.

There was no impact of DoxyPEP on ceftriaxone, ciprofloxacin and azithromycin susceptibility.

We identified a new GC cluster with Decreased Susceptibility to cefixime and HLR to tetracycline without clear association with doxyPEP.

Monitoring the emergence of 3rd generation cephalosporin resistant isolates remains critical.

22 - 26 July · Munich, Germany and virtual

aids2024.org

%

Resistance to tetracycline, MIC distribution

4CMenB Vaccine

78 GC isolates

More high-level tetracycline-resistant isolates in the DoxyPEP arm

Molina et al, Lancet Inf Dis, 2024 May 23:S1473-3099(24)00236-6.; www.eucast.org/clinical breakpoints/

Decreased susceptibility to cefixime, MIC distribution

78 GC isolates

Isolates with Decreased Susceptibility to cefixime were more frequent in the doxyPEP arm.

Resistance: MIC>0.125 mg/L, Decreased susceptibility 0.125≤MIC>0.032 mg/L www.eucast.org/clinical_breakpoints/

Bercot B, et al. AIDS 2024. Abstract SS0404LB.

Multimorbidity among ageing PWH in US South

 Descriptive analysis of multi-morbidities (2 or more) among PWH age 65+ in care at UNC in 2022-2023

Table 1	. Characteristics of	PWH by Gender	
Characteristics	Female (n=89)	Male (n=210)	Overall (n=299)
Age (years)			
median (25th, 75th, max)	71.0 (68.0, 74.0, 90.0)	70.0 (67.0, 73.0, 90.0)	70.0 (67.0, 73.0, 90.0)
Race			
African American	68 (76.4)	99 (47.1)	167 (55.9)
White	16 (18.0)	97 (46.2)	113 (37.8)
Other	5 (5.6)	14 (6.7)	19 (6.4)
Years since HIV diagnosis			
median (25th, 75th, max)	25.0 (19.0, 29.0, 38.0)	25.0 (17.0, 31.0, 42.0)	25.0 (18.0, 30.0, 42.0)
Suppressed at last visit (<50)			
Yes	85 (95.5)	199 (94.8)	284 (95.0)
No	4 (4.5)	11 (5.2)	15 (5.0)
Ever on an integrase inhibitor in 2022-2023			
Yes	75 (84.3)	153 (73.6)	228 (76.8)
No	14 (15.7)	55 (26.4)	69 (23.2)
Visits to HIV clinic in 2022- 2023			
<5 visits	45 (50.6)	89 (42.4)	134 (44.8)
5 or more visits	44 (49.4)	121 (57.6)	165 (55.2)
median (25th, 75th, max)	4 (3, 6, 24)	5 (4, 7, 24)	5 (3, 6, 24)

Comorbidity definitions:

- Diabetes Mellitus (DM): on a medication AND (a) ICD9/10 code OR
 (b) A1c ≥ 6.5
- Hypertension (HTN): on a medication AND (a) ICD 9/10 code OR
 (b) elevated Blood Pressure
- Chronic Kidney Disease (CKD): Stage 3 or greater in prior two visits (eGFR<60 computed using the 2021 CKD Epidemiology Collaboration equation)
- 4. Hyperlipidemia (HLD): antilipemic medication use
- 5. Hepatitis B: positive surface antigen, or core antibody, or DNA
- 6. Hepatitis C: positive antibody or RNA
- 7. Obesity: BMI \geq 30kg/m²

Multimorbidity among ageing PWH in US South

 Descriptive analysis of multi-morbidities (2 or more) among PWH age 65+ in care at UNC in 2022-2023

- ❖ Prevalence of multimorbidity (≥2 comorbidities) among older PWH was high (83.6%) but did not differ significantly by gender
- ❖ In multivariable analysis, duration (years) of HIV diagnosis was a statistically significant independent predictor of multimorbidity status after adjusting for age, race, gender, nadir CD4 cell count and ≥ 5 HIV clinic visits (p=0.0258)

* p-value < 0.05

Why does this matter? Complications

- Further evidence of an association between abacavir and CVD.
- Further evidence that INSTI do not cause HTN
- Anal cancer screening with hrHPV and cytology has best performance
- DOXYPEP is important intervention to reduce STI among MSM. Drug resistance may limit its usefulness for gonorrhea.
- Further data demonstrate multi-morbidity prevalence among older PWH.

COVID-19

COVID-19 continues to spread and be a major cause of death in the US (CDC)

Number of deaths for leading causes of death

• Heart disease: 702,880

• Cancer: 608,371

Accidents (unintentional injuries): 227,039

• COVID-19: 186,552

• Stroke (cerebrovascular diseases): 165,393

Chronic lower respiratory diseases: 147,382

Alzheimer's disease: 120,122

• Diabetes: 101,209

• Nephritis, nephrotic syndrome, and nephrosis: 57,937

Chronic liver disease and cirrhosis: 54,803

TOTAL DEATHS 1,197,470

- Tallying how many people getting infected with COVID-19 is hard given home testing and fewer reporting requirements than earlier in the pandemic.
- Wastewater is analyzed for SARS-CoV-2 levels and can serve as a proxy for burden of COVID-19

- Based on wastewater data, as many as 900K a day may be getting infected now.
- Hospitalizations and deaths due to COVID-19 are up but not nearly as high as earlier in pandemic.

- The current surge can be explained by seasonality (every summer we get an increase in cases) and the evolution of the virus to be more transmissible.
- While all the variants remain in the Omicron family, they have evolved from prior variants and gain better ability to spread.
- No evidence that current variants cause different or more severe disease.

- COVID-19 vaccines protect against:
 - Infection May wane over weeks/months
 - Severe COVID-19 Persists
 - Long COVID-19
- COVID-19 vaccines are among the safest vaccines we have.
- Updated vaccines for Fall 2024 are coming from Moderna and Pfizer. They will be mRNA vaccines that are designed to prompt a response to the KP.2 variant.

SHOTS - HEALTH NEWS

Updated COVID vaccines are coming soon

AUGUST 22, 2024 · 5:00 AM ET

HEARD ON MORNING EDITION

- In clinical trials earlier in the pandemic Paxlovid was found to protect people at high risk of severe disease from progression of COVID-19. Less data to support use in lower risk people.
- With better immunity, fewer may need an antiviral.
- Several studies find Paxlovid reduces risk of Long COVID.
- Best candidates for Paxlovid are:
 - Older people (75+)
 - Those who may expect their immune response to vaccination or prior infection to be weak
 - Pregnant people
 - Anyone who really wants it.

COVID-19: Lasting impact

Even those survivors with mild initial cases can have wide-ranging health issues for six months or more. two years

WashU researchers have linked many diseases with COVID-19, signaling long-term complications for patients and a massive health burden for years to come.

Cardiovascular

acute coronary syndrome, heart failure, palpitations, arrythmias, hypertension

Respiratory system

cough, shortness of breath, low blood oxygen

Kidney

acute kidney injury, chronic kidney disease

Musculoskeletal

joint pain, muscle weakness

General

malaise, fatigue, anemia

stroke, headaches, memory problems, smell problems

Metabolic/ endocrine

obesity, diabetes, high cholesterol

Gastrointestinal

constipation, diarrhea, acid reflux

Skin disorders

hair loss, rash

Coagulation disorders blood clots

Long COVID-19 Trajectories

Longitudinal cohort study 1,106 people unvaccinated with COVID-19 in Zurich. Decreasing rates of impairment but 18% not fully recovered at 2 years.

Why does this matter? COVID-19

- We are in a COVID-19 surge
- Largest summer surge
- New variants (KP.3) are more transmissible but not more deadly
- New vaccines are coming and will be better
- Paxlovid remains best treatment for those at high risk and perhaps to reduce Long COVID-19
- Masking works
- Long-COVID is major issue and is focus of belatedly intense study

MPOX

The New York Times

W.H.O. Declares Global Emergency Over New Mpox Outbreak

The epidemic is concentrated in the Democratic Republic of Congo, but the virus has now appeared in a dozen other African countries.

A laboratory nurse, with samples taken from a patient with a suspected case of mpox near Goma, Democratic Republic of Congo. Arlette Bashizi/Reuters

U.S. Deaths
Total Deaths
58

Global Cases

Total Cases

99,518

- There are several outbreaks happening at the same time in DRC.
- In some provinces, patients have acquired infection through contact with infected dead or live wild animals, household transmission, or patient care (transmitted when appropriate PPE wasn't used or available)
 - a high proportion of cases have been reported in children younger than 15 years of age.
 - In other provinces, the cases are associated with sexual contact among men who have sex with men and female sex workers and their contacts.

Countries with Confirmed or Presumed Clade I Mpox Cases, Central and Eastern Africa

- Since January 2023, the Democratic Republic of the Congo (DRC) has reported more than 27,000 suspect mpox cases and more than 1,300 deaths.
- There are two types of mpox, **clade I** and **clade II**. Clade I usually causes a higher percentage of people with mpox to get severely sick or die compared to clade II.
- The current outbreak is more widespread than any previous DRC outbreak, and clade I mpox has spread to some neighboring countries, including Burundi, Central African Republic, Republic of the Congo, Rwanda, Uganda.
- A case of clade I has been reported in Sweden.

- Tecovirimat (TPOXX) has been used to treat mpox clade II but a recent NIH trial(PALM) conducted in DRC with patients infected with clade I did not show efficacy.
- Rates of mortality were lower than expected in both the TPOXX and placebo arms.
- Whether these results translate to other settings and populations or clade II is unknown.

JYNNEOS VACCINE, US, CDC

Adjusted vaccine effectiveness (VE) of JYNNEOS vaccine against mpox by study and number of doses

<u>JYNNEOS vaccine (the vaccine used in the current mpox outbreak) is effective</u> at preventing mpox among people at risk of mpox. Although ~1.2 million vaccine doses have been administered, <u>only 23%</u> of the <u>population at risk</u> has been <u>fully vaccinated</u> nationally. Vaccine coverage varies widely between jurisdictions. Reasons for coverage variability could include lower vaccine accessibility and awareness, fewer vaccine providers, lower vaccine confidence and demand, and concern about stigma; https://www.cdc.gov/poxvirus/mpox/cases-data/mpx-jynneos-vaccine-coverage.html

Why does this matter? MPOX

- The rise in cases of clade I in DRC and other African nations is deeply concerning for the people in this region and for the potential of spread to other regions.
- Almost certainly we will see clade I in US.
- As clade II involved mostly MSM, need to be prepared to provide information to communities that can be impacted and healthcare providers.
- Vaccination should protect against clade II but need both shots.
- Whether TPOXX works is unclear, and all should be referred to the STOMP Trial.

